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We have developed a system that makes it possible to derive parameters of a Kuramoto-Sivashinsky
(KS) model from a single given two-dimensional profile of surface structures, such as those pro-
duced by ion and plasma irradiation. The numerical method is inspired by well-known approaches
to facial recognition. Starting from a scaled version of a KS Model to describe surface erosion, a
training set of surface profiles is created. Each profile is assigned an appropriate feature in Fourier
space and a Singular Value Decomposition is used to determine an orthogonal set of eigenfeatures
that allow each profile to be assigned a point in the space of this basis and to determine the
distances between them. It turns out that the profiles belonging to different model parameters
are clearly separated from each other in this feature space, which enables very good identifica-
tion. We explain the basic relationships using a synthetic data set and discuss the possibilities for
applications to experimental results.
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I. INTRODUCTION

By bombarding surfaces with high-energy ions, it is
now possible to obtain extensive information on surface
structures with a very high degree of accuracy. One ex-
ample of this is atomic force microscopy, which is used in-
tensively to investigate erosion-induced surface changes.
These experimental findings can be compared with nu-
merous theoretical and numerical studies, which have
shown that a large number of morphological changes
can be described by relatively simple continuum models.
Since the pioneering work of Bradley and Harper [1], var-
ious linear and non-linear extensions of continuum mod-
els have been successfully used to describe the temporal
evolution of a variety of surface structures. In all these
continuum models, a single evolution equation is formu-
lated for a height function h(x, y, t), describing the height
of a surface with respect to a reference x-y-plane and
time t. Contributions to such an equation reflect various
physical phenomena resulting from interactions between
ions and solid surfaces. Discussions of derivations of such
models, their fundamental properties and examples of
applications can be found, for example, in Refs. [2–9].
Of course the properties of such model equations depend
on certain parameters representing different physical pro-
cesses in the system uinder consideration. Therefore, the
derivation of relationships between observed surface pro-
files and the corresponding model parameters would be
desirable. A semi-empirical approach to cope with this
problem has been discussed by Muñoz-Garćıa et al. in
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Ref. [7], where they derived model coefficients from ana-
lytical estimates and experimental data. Another exam-
ple is discussed in Ref. [8] where the authors identified
the anti-diffusion coefficient of the one dimensional lin-
earized version of a prototypical Kuramoto-Sivashinsky
(KS) model [10; 11] for ion-beam irradiated surface pro-
files. Reiser has shown that, in principle, it is possible
to derive the model coefficients of the two-dimensional
nonlinear version of such continuum models by analyzing
two or more consecutive snapshots of the surface struc-
tures during irradiation [12]. In further studies it became
clear that the restriction of the time step between the
snapshots, as required in this approach, is not compat-
ible with experimental constraints. The data currently
available are still too uncertain with respect to possi-
bilities of tracking fine details to arrive at clear results.
The basic problem lies in the necessary mounting and de-
mounting of probes needed for the experimental analysis,
which does not allow to follow individual points in time.
For this reason, we decided to study, or rather develop,
methods for which only a single snapshot is sufficient to
enable model discovery. This parameter identification
process is based on generating features from the spectra
of surface profiles with known model parameters to con-
struct a basis of an eigenspace in which any new profile
snapshot can be expanded and be considered as a point
with respect to this basis. Thus, the Fourier spectrum
of a single newly acquired snapshot can then be com-
pared with known snapshots in this eigenspace to then
extract corresponding model parameters. A brief sketch
of the basic ideas and preliminary results have been pub-
lished already in Ref. [13]. In this work the approach is
explained in detail and numerical results are presented
to show that (1) all points in the orthogonal eigenspace
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are well separated for different model parameters, (2) an
identification of model parameters via nearest neighbor
search is possible, (3) only a few eigenfeatures are needed
for identification, (4) simple re-scaling allows the use of
a short catalogue of training profiles to classify even pro-
files of very different ranges of model parameters and to
consider realistic surface patterns from experiments. We
have structured the manuscript as follows: In Section II
we present the continuum model for surface structures to
be discussed. An appropriate scaling is introduced to re-
strict the parameter range in the production of training
data for the data analysis. In Sec. III we introduce the
concept of features in Fourier space to characterize par-
ticular surface patterns. The numerical approach based
on a Singular Value Decomposition (SVD) of the feature
matrix is elucidated. Those concepts are applied to our
synthetic data in Sec. IV. It is shown that the training
with our set of training profiles gives a satisfactory qual-
ity in model identification. Particular aspects in model
discovery of certain model parameters are discussed and
methods to extend our approach to experimental data
are sketched in Sec. V.

II. CONTINUUM MODELS FOR SURFACE
MORPHOLOGY

The major goal in our analysis of surface patterns is to
extract a continuum model of the KS type. In this work
the particular model for the time evolution of the surface
height h(x, y, t) reads as

∂h

∂t
= κx

∂2h

∂x2
+ κy

∂2h

∂y2
+
λx
2

(
∂h

∂x

)2

+
λy
2

(
∂h

∂y

)2

−K∇2∇2h− b h̄

(1)

Here h̄ denotes the spatial average of h over the x-y-
domain considered. The coefficient b represents a nu-
merical damping effect to push h̄ to zero. The coefficients
λx and λy describe the basic process of slope-dependent
erosion and (re-) deposition. The terms with κx and κy
describe the effect of surface tension in the erosion and K
represents surface diffusion. Of course, this model does
not cover all possible morphological patterns observed in
experiments. Rather, the way the model equations are
formulated here, they represent a relatively simple vari-
ant of a KS model. Various extensions of the model have
been discussed in the literature (for an overview see e.g.
Ref. [6]), but in this paper we restrict ourselves to the
form in Eq. 1 in order to have a manageable number of
model parameters. The methods we present can also be
applied directly to model extensions, which would, how-
ever, entail a larger numerical effort.
Now, to consider the equation in a more general context,
a scaling is helpful. Therefore, scaling factors for time,

spatial length and height are introduced via

x→ l0 x , y → l0 y , t→ t0 t , h→ h0 h (2)

This leads to the dimensionless form
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with scaled model parameters

κ′x =
κx t0
l20

, κ′y =
κy t0
l20

(4)

λ′x =
λx h0 t0
l20

, λ′y =
λy h0 t0
l20

(5)

K ′ =
K t0
l40

, b′ = b t0 (6)

Introducing the constant reference values κ0, λ0 and K0

as

κ0 =
l20
t0

, λ0 =
l20
h0 t0

, K0 =
l40
t0

(7)

leads to the equivalent expressions

κ′x =
κx
κ0

, κ′y =
κy
κ0

(8)

λ′x =
λx
λ0

, λ′y =
λy
λ0

(9)

K ′ =
K

K0
, b′ =

K0

κ20
b (10)

Choosing κ0 = −min(κx, κy) and λ0 = max(|λx|, |λy|),
prescribes λ′x or λ′y as ±1. Parameter sets with
min(κx, κy) ≥ 0 do not provide a linear instability driv-
ing the formation of surface structures, so such combina-
tions are not considered. Consequently, this constraint
always sets one of the two coefficients, κ′x or κ′y, to −1.
As mentioned, the parameter b′ is needed just for numer-
ical purposes, i. e. keeping h̄ ∼ 0. Experience shows that
b′ = 100 is appropriate for our simulations. A rotation of
the coordinate system, which transforms x into y, does
not yield any new structures, so that one can restrict
oneself to the following cases with κ′x = −1 to conduct a
comprehensive parameter scan for synthetic profiles.

κ′x = −1 , λ′x = ±1 , κ′y ∈ [−1,∞] , λ′y ∈ [−1, 1]

κ′x = −1 , λ′y = ±1 , κ′y ∈ [−1,∞] , λ′x ∈ [−1, 1]
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(11)

The parameter K ′ is always set to 1 in these scans. The
usual way to read it is that the scaled results can be con-
verted to physical units as long as the parameters κ0, λ0,
K0 are known. Now our goal is to generate a catalog of
training profiles in order to enable the identification of
unknown profiles by comparing them with the catalog.
For this purpose, the parameter ranges as described in
the relations 11 are to be scanned. For the numerical
calculations, a surface of size L × L is considered, with
L = 200 in dimensional units. The reference plane is dis-
cretized using 256×256 grid points and the time integra-
tion of Eq. 3 is done using the Ralston’s method (Eq. 3.5
in [14]) with dimensionless time step ∆t = 10−3. Here,
however, we encounter a problem, because for a real pro-
file, i.e. an experimentally observed pattern, the model
parameters are at the center of interest and completely
unknown. In general, one way out would be to aban-
don scaling the model equation and perform a scan in a
suitable part of the physical parameter space. The con-
sequence here would be that far more simulations would
have to be provided. However, the method for evaluating
the profiles, which is presented in the next sections, would
not change. There is therefore no problem in principle
and our selection of training data only serves to reduce
the computational effort in order to demonstrate the use-
fulness of the method. In our particular case, however, it
is even possible to find a re-scaling that allows the eval-
uation of real profiles. This point is discussed briefly in
Sec. V.

III. EIGENFEATURE APPROACH FOR SINGLE
SNAPSHOT DATA

The ideas presented in this work are inspired by known
procedures from face recognition, the so-called ”eigen-
face” analysis, [15]. We adapt it as follows: Based on a
number of height profile snapshots in the saturated phase
for different model parameters, certain features are de-
fined to characterize the corresponding two-dimensional
Fourier spectra. Using these features as characteristic
patterns the algorithm constructs a basis of ”eigenfea-
tures” in feature space, which is used to expand the fea-
ture vector of a particular height profile. If these base
vectors are sufficiently representative of the particular
model parameters and their impact on the features of
the height profiles, it might be possible to identify un-
known values of model parameters via inspection of the
location in feature space.

A. Fourier Decomposition and Feature Space for Surface
Structures

The identification of the model coefficients κ′x, κ′y, λ′x
and λ′y of Eq. 3 using only a single image of the height

profile of the surface h(x, y, t) at a given time t is in the

FIG. 1 Example of the time evolution of surface roughness

W 2 = h2 − h
2

for model parameters κ′x = −1, κ′y = −1,
λ′x = 1, λ′y = 1/2, K′ = 1 and b′ = 100. The simulation
was started at t = 0 with small amplitude white noise. Up to
t ≈ 40 an exponential growth is observed, then a non-linear
saturation sets in. For the subsequent analysis we focus on
snapshots of the saturated phase.

focus of our approach. To accomplish this, certain sig-
nificant features of particular profiles have to be found,
to find a clear correspondence between model parameters
and structural details of the profile. The non-linear dy-
namics lead to strong temporal fluctuations in the sur-
face structures and Fig. 1 illustrates this by means of
the temporal changes of the roughness W , defined by

W 2 = h2 − h2. At the beginning an exponential growth
appears and later on a non-linear saturation is reached.
When comparing the snapshots point by point in the
x-y-plane, a single image at one time t is usually com-
pletely different from an image at another time t + ∆t,
even if they are based on the same set of model param-
eters and both come from the saturated state. This is
illustrated by Fig. 2, where snapshots for three different
sets of model parameters at three different time points
are shown. Thus, the consideration of individual pixels
is not meaningful enough to infer the underlying param-
eters. This is confirmed by the observation that typical
statistical measures such as autocorrelation, mutual in-
formation or Fisher information between successive snap-
shots decrease rapidly over time. From this point of view,
the individual snapshots appear very different and unre-
lated after a certain time.
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Model 1

time

Model 3

Model 2

FIG. 2 Examples of time series of snapshots for different sets of model parameters. Even if the details are different, the
snapshots of a particular model are similar, in the sense that they have similar structures for the bare human eye. The x- and
y-coordinates are in units of l0 (see section II) and the colorbar shows the height in units of h0.

On the other hand, even with the bare eye, one finds
that the profiles in Fig. 2 indeed do have typical fea-
tures and profiles of the saturated phase if they belong
to the same set of model parameters. They look ”simi-
lar” for the human eye. The reason is that the typical
spatial length scales and symmetries are very significant
for a particular set of model parameters. Such a situa-
tion suggests to focus on the Fourier spectra. In fact, the
Fourier spectra for different time points of the temporal
evolution of the surface structures are very similar for a
given set of parameters in the non-linear saturation and
fluctuate only relatively little around a mean value. This
is illustrated by Fig. 3, where certain features (functions
of Fourier coefficients) corresponding to the real space
profiles of Fig. 2 are shown. Therefore, we now proceed
with the Fourier decomposition of the height profile

h(x, y, t) =

Nx∑
m=−Nx

Ny∑
n=−Ny

hm,n(t) eimkxx+i nkyy (12)

and introduce feature functions F of the form

F (m,n, t) =

 log10 fm,n : fm,n ≥ fmin
m,n

log10 f
min
m,n : otherwise

(13)

where fm,n is a real valued function of the Fourier com-
ponents hm,n(t). To avoid fm,n = 0 in the logarithm a
lower bound is introduced fmin

m,n = ρ fmax
m,n with 0 < ρ < 1.

A particular profile h(x, y, t) at time t is therefore de-
scribed by a vector of the NF = (2Nx + 1) × (2Ny + 1)
points F (m,n, t). In our numerical application a time se-
ries of N profiles is used to analyze the saturated phase
of the surface dynamics.
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time

Model 1

Model 2

Model 3

FIG. 3 The features corresponding to the real space profiles of Fig. 2 show certain similarities for a particular set of model
parameters. All feature profiles are always very close to temporal average and a distinction between different model parameters
is very clear. For the figures shown here the feature function F (1) is used, defined by Eqs. 27 and 28.

For this purpose, the statistically stationary state of
the system will be characterized by the average feature
elements

F̄ (m,n) =
1

N

N∑
t=1

F (m,n, t) (14)

B. Eigenvectors in Feature Space

To train the algorithm for pattern recognition in sur-
face structures several forward simulations of model Eq. 3
are conducted. This provides typical patterns as defined
in Eq. 13 for a variety of model parameter combinations.
Each parameter set will be characterized by a temporal
average as defined in Eq. 14 and these averaged features
(characteristics of the Fourier spectra) form the compo-
nents Ωij , of a feature matrix Ω ∈ RNF×NP .

Ωij = F̄ (j)(mi, ni), (15)

where NF stands for the number of feature points and
NP for the number of parameter sets used for training.
In this notation, the index i serves as a multi-index for
all combinations of the indices m and n, and j labels a
particular parameter set. The columns of the matrix Ω
are eventually feature vectors Φj , j = 1, . . . , NP . They
form the training vectors of the recognition procedure
and contain the averaged feature profiles for each com-
bination of model parameters considered in the forward
simulations. Usually NF � NP , which means the num-
ber NF of feature points is much larger than the number
NP of training profiles. It would be advantageous to find
an orthogonal set of base vectors in RNF to expand the
profiles in this base feature vector space and it would be
even better if this space was rather low dimensional,
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Model 1 Model 2 Model 3

......

Model NpModel Np−1Model Np−2

......

FIG. 4 Combining the averaged features of NP sets of model parameters constitutes the feature matrix defined by Eq. 15.

i. e. only a few base vectors (much less than NP ) are
needed to give an accurate representation of each feature
vector for a given profile. It is well known that this can
be accomplished by computing the SVD of the matrix Ω.

Ω = U · S ·VT (16)

where U ∈ RNF×NF , S ∈ RNF×NP and V ∈ RNP×NP .
The matrices U and V are orthonormal and the matrix
S has r non-zero components on the diagonal only, the
singular values σ1, σ2, . . . , σr, r ≤ min(NF , NP ). The
other diagonal elements are zero, σi = 0 for i > r. The
columns of V (denoted by vi ∈ RNP , i = 1, . . . , NP ) are

normalized eigenvectors of the product ΩT · Ω and the
columns of U (denoted by ui ∈ RNF , i = 1, . . . , NF ) are

normalized eigenvectors of the product Ω ·ΩT. Thus, the
matrix Ω can be represented by dyadic products as

Ω =

r∑
i=1

σi uivi , ΩT =

r∑
i=1

σi viui (17)

and it follows that the ui are the left-singular vectors
of Ω and the vectors vi the right-singular vectors of Ω,
meaning

ui ·Ω = σi vi , Ω · vi = σi ui (18)

Consequently, the vectors ui corresponding to a zero sin-
gular value form a basis for the left nullspace of Ω, and
the vectors vi corresponding to a zero singular value form
a basis for the right nullspace of Ω. Moreover, one ob-
tains

ΩT ·Ω =

r∑
i=1

σ2
i vivi , Ω ·ΩT =

r∑
i=1

σ2
i uiui (19)

and, therefore

ΩT ·Ω · vi = σ2
i vi , Ω ·ΩT · ui = σ2

i ui (20)

Finally, the training profiles Φj (feature vectors) can be
represented as

Φj = Ω · q̂j =

r∑
i=1

σivi · q̂j ui =

r∑
i=1

σiVji ui (21)

where q̂j is the j-th unit Cartesian base vector in RNP .
Therefore,

Φj · ui = σiVji (22)

Similarly, the feature vector φ for any other profile (not
belonging to the training set) will be expanded in the
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same manner using the base vectors ui

φ =

NF∑
i=1

ϕi ui (23)

where the expansion coefficients are

φ · ui = ϕi (24)

In practical applications the computation of the base vec-
tors ui is done via the computation of the eigenvectors
vi of ΩT · Ω and subsequent use of Eq. 18 in the form
ui = Ω · vi/σi for the non-zero eigenvalues σi. Note,
that the number r of non-zero eigenvalues is usually
much smaller than NF . Therefore, the base vectors ui,
i = 1, . . . , r are sufficient to provide an expansion for the
feature vector Φj , but might not be sufficient for the ex-
pansion of Eq. 23. This would be the case if φ was very
different from the training set and a check of the quality
of the expansion of φ when using the first r base vectors
ui is only needed as a prerequisite for the analysis de-
scribed in the next section. This can be done, e. g. by
checking if |φ| is unchanged using the reduced expansion
with r base vectors.

C. From Patterns to Model Parameters

The preparatory work of sections III.A and III.B now
allows to represent any feature vectors with respect to
an orthogonal basis consisting of the ”eigenfeatures” ui.
In particular, it is now possible to define a reasonable
Euclidian distance vector

δj = Φj − φ =

r∑
i=1

(σiVji − ϕi) ui (25)

such that the distance δj between any test profile φ and
the training profile Φj can be obtained via

δ2j =

r∑
i=1

(σiVji − ϕi)
2 (26)

This quantity describes how close a test profile is to
the respective training profiles when measured against
the specific feature function F (m,n, t) as defined by
Eq. 13. We usually have more than one model param-
eter to determine and it is generally not known before-
hand which feature represents which parameter particu-
larly well. Therefore, it makes sense to work with sev-
eral feature functions F (k)(m,n, t) in order to improve
the sensitivity of the algorithm with respect to different
parameter combinations. This can be done by simply
increasing the size of the feature matrix Ω.
IV. APPLICATION OF EIGENFEATURE APPROACH TO
SYNTHETIC DATA

A. Example Data

To apply the approach described in section III syn-
thetic data is generated to calculate the eigenfeatures of

a set of NP = 146 time series each consisting of 80 snap-
shots for grid sizes of 256× 256 points. Each time series
represents a different set of model parameters according
to the scaled model defined by Eqs. 3, 8 – 10 and using
the parameter range prescribed in Eqs. 11. The following
feature functions have been employed

F (k)(m,n, t) =

 log10 f
(k)
m,n : f (k)m,n ≥ f (k)min

m,n

log10 f
(k)min
m,n : otherwise

(27)

with ρ = 10−10 and f
(k)
m,n = |hm,n|2 |g(k)m,n|2 where

g(1) =

(
∂h

∂x

)2

, g(2) =

(
∂h

∂y

)2

g(3) =
∂2h

∂x2
, g(4) =

∂2h

∂y2

(28)

These feature functions have been evaluated for all 146 ×
80 snapshots available from our forward simulations and
the respective averages F̄ (k)(m,n, t) were taken over the
80 time steps of the non-linear saturation. The result-
ing 146 feature functions F̄ (1), . . . , F̄ (4) form the train-
ing vectors Φj , j = 1, . . . , 146 with dimension NF =
4× (2Nx + 1)× (2Ny + 1), where Nx = Ny = 128.
As mentioned above, figure 2 shows exemplary snapshots
from the dataset of surface height profiles from three time
series with different model parameters. In these images
and all following depictions of surface height profiles the
abscissa and ordinate indicate the position in units of
l0 (see section II) and the colorbar shows the height in
units of h0. The corresponding feature images are shown
in Fig. 3 and are obtained from the whole time series
(more precisely: the part of the time series which be-
longs to the statistically stationary phase). For clarity
only the features using g(1) are shown. The abscissa and
ordinate are in arbitrary units and the colorbar indicates
the value of the feature function F̄ (1)(m,n).
These examples show clear differences in the structures
of the feature images indicative of the different structures
observed in the actual surface profiles. For example, the
elongated shape visible in the feature images of model
3 in figure 3 is indicative of structures with a stronger
elongations along the y-axis in the actual profile than is
the case for model 1 and model 2. The subsequent con-
struction of the feature matrix Ω is illustrated by Fig. 4.
After averaging over time for all NP model parameter
sets, the resulting feature profiles are combined in the
feature matrix which contains the entire training data.
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(a) (b) (c)

FIG. 5 Squared expansion coefficients for the training vectors Φ20 (a), Φ50 (b) and Φ98 (c). On the x-axis the index (eigen-
feature number) of the base vectors ui, i = 1, . . . , 146 is given. The expansion coefficients are normalized by the value of the
first component, which is therefore prescribed as 1. One finds that for Φ20, Φ50, Φ98 and all other training vectors only the
first few expansion coefficients are significant. Expansion coefficients not appearing for higher indices i in this half-logarithmic
plot are zero.

We are now interested in the following questions

(1) Does the basis of eigenfeatures ui provide a low di-
mensional space where only a small number of ex-
pansion coefficients is sufficient to get a reasonable
representation of all Φj according to Eq. 21?

(2) Is the basis of eigenfeatures sufficient to get a rea-
sonable representation of a test vector φ too? Of
course, this is hard to check in general, but a simple
check is to test if the length φ2 is kept unchanged
in the reduced basis with r base vectors.

(3) Is it possible to find a clear correspondence between
the expansion coefficients ϕi, i. e. the location in
feature space of the height profile to be investi-
gated, and the model parameters related to this
particular profile?

The third point is of course in the focus of this work. It
is clear that the task to identify model parameters from
a single snapshot can only be accomplished if the choice

of feature functions f
(k)
m,n is appropriate for the model

used. This can not be predicted when studying an un-
known situation and even for the model considered here,
it is not obvious what might be the most informative
function to classify the Fourier-decomposed profiles of
the surface height. Therefore, the results presented here
must be regarded as preliminary and no final answer can
be given at the moment. However, we will show that,
despite of these ambiguities, some clear correlations can
be observed even for simple choices of features.
B. Expansion Coefficients

To illustrate the answer to item (1) we show in Fig. 5
the expansion coefficients of the averaged feature vectors

Φ20, Φ50 and Φ98 as representatives for the entire set
of training vectors (the labeling is arbitrary and just ac-
cording to our specific ordering of the set). Shown are the
squared expansion coefficients scaled to the first compo-
nent, which is therefore set to 1. It is obvious that only a
few components contribute significantly to the expansion
of the training vectors with respect to the eigenfeatures.
Actually a number of less than 20 components is suffi-
cient to get a good representation. Components beyond
eigenfeature number 20 do not contribute significantly,
because they are all of order 10−3, compared to the first
component. The same result is found also for all other
training vectors. It can be concluded, that the features
defined are useful to reduce the dimension of the feature
space to a convenient number.

C. Nearest Neighbor Search

The next point concerns the accuracy in identifying
model parameters from a test profile not belonging to
the set of training data. As explained earlier, the train-
ing data consists of a set of 146 time-averaged profiles
of surface height profile features, each obtained by aver-
aging 80 snapshots. The notable point is that all these
snapshots look ”similar” but are indeed very different if
one compares the 2D structures in real space point by
point. Consequently the averaged picture is also quite
different from a certain snapshot, but should be ”sim-
ilar” with respect to the features corresponding to the
underlying model parameters.
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(a) (b) (c)

FIG. 6 Nearest neighbor analysis of a test vector (single snapshot) from the time series corresponding to training vectors
(averages over time series) Φ20 (a), Φ50 (b) and Φ98 (c), respectively. The strongest peaks correspond to the closest training
vectors. They are located at i = 20 for Φ20, at i = 64 for Φ50 and at i = 98 for Φ98. Note that the ideal result would be a
dominant peak at i = K for any profile of the time trace belonging to the parameter group of ΦK . The deviation for Φ50 is
explained in the text.

We now test whether the group, i. e. the specific set
of model parameters, of a single snapshot can be iden-
tified by a simple nearest neighbor check, for which we
search for the training vector Φj that has the shortest
distance δj as defined by Eq. 26. A result for a snapshot
belonging to the respective group of Φ20, Φ50 and Φ98

is shown in Fig. 6. The figure shows the inverse distance
of the test profile with respect to all training profiles. A
good outcome would be to identify Φ20, Φ50 or Φ98 as
nearest neighbors, which would mean that the training
set has sufficiently separation in the feature space. Such
an “ideal” result is indeed obtained in the examples of
Fig. 6 for Φ20 and Φ98. There the test profiles of the
corresponding time traces have the shortest distance to
the correct training vector. The result for a test vector of
the Φ50 group is a bit surprising (i = 64 has been iden-
tified as closest training vector, whereas i = 50 would be
the optimal result). But, if one takes a closer look at the
parameter sets underlying the groups of Φ50 and Φ64,
respectively, one finds that they are identical except for
the parameters λ′x and λ′y. But they differ just by their
respective sign. This means that the model Eq. 3 is just
changed by λ′x → −λ′x and λ′y → −λ′y when switching be-
tween set number 50 and set number 64. And this is the
same as if one would change h→ −h, i. e. , the solutions
are the same just with sign changed in the height profile.
This gives the explanation for the “error”: our particu-
lar choice of features to characterize the height profiles
can not distinguish between surface patterns where only
the sign is changed. At the moment we can not offer
a simple solution for this, but to remove this mismatch
in the identification of parameter groups, it would be
needed to refine the feature definition to separate “mir-
rored” images. We extended this kind of analysis by con-
sidering the entire set of 80 snapshots of the respective

time traces and counted which training vector has been
identified how many times. Again, an ideal result would
be that i = K is identified for all snapshots belonging
to ΦK , which would lead to a count of 80 for the right
training vector. The results are shown in Fig. 7. For
Φ98 (subfigure (c)) the result is very satisfactory, all 80
snapshots were identified as member of the group with
number 98. For Φ50 (subfigure (b)) the same mismatch
that has been explained above appears for all snapshots.
Therefore, the “error” is a systematic mismatch due to
the oversimplified feature definition. The results for Φ20

(subfigure (a)) show that most of the snapshots point to
the correct result, but a few are tending to Φ133. In this
case there are almost identical parameters, but again a
change in sign in the parameters λ′x and λ′y and also the
value of |λ′y| is changed from 0.5 to 0.6 when going from
model set 20 to set 133. Actually, the model, Eq. 3, con-
sidered in this work most often shows only a slight change
with λ′y and it seems that the precise value of the parame-
ters λ′x and λ′y does not play a significant role. Therefore,
the accurate reconstruction of those parameters might be
difficult, but also not too important in our example. On
the other hand we observed that the value of κ′y is most
of the times much more precisely found. The similarity
between the models set numbered with 20 and the one
with number 133 is visualized in Fig. 8. It is obvious that
the difference in the parameter λ′y is not causing a signif-
icant difference in the overall structure. From this point
of view the pattern recognition technique is working well
for our examples. All in all, it can be concluded, that, at
least for the test profiles taken from the particular time
series in the forward simulations, the comparison of loca-
tions in feature space leads to fairly good identification
of model parameters. To cope with certain symmetries
of the model a refined feature needs to be introduced.



10

(a) (b) (c)

FIG. 7 Shown are the counts of identified training vectors when checked for the entire set of snapshots in the corresponding
time trace. Ideally, a count of 80 (all snapshots) are assigned to the right training vector (here: i = 20, 50, 98). Deviations are
explained in the text.

D. Identification of Arbitrary Synthetic Profiles

Now the next question arises immediately: is it pos-
sible to obtain the model parameters for a given single
snapshot just by its location in feature space without
comparing it with the training data via nearest neighbor
distance? This would mean that a certain mapping be-
tween model parameters and coordinates in feature space
is available. For this purpose we conducted a test with
three surface patterns not being part of the model pa-
rameters used for preparing the training data. The pa-
rameters chosen for this test are listed in Tab. I. For
each set we conducted a simulation and prepared a time
trace of 80 snapshots in the saturated state as done for
the training profiles. Then a nearest neighbor search
was performed as before leading to the results shown in
Fig. 9. One can see, that there might be more than a sin-
gle pronounced match in the closest distance and several
training vectors have been picked out as best match for
the different parameter sets. For comparison with the

λ′x λ′y κ′x κ′y

test 1 1.0 0.32 −1.0 2.0

test 2 1.0 −0.34 −1.0 6.0

test 3 1.0 0.60 −1.0 4.0

TABLE I Model parameters for the three test cases. The
other parameters used are K′ = 1 and b′ = 100.

(known) parameters of the test cases the model param-
eters for the respective best match training vectors are
listed in Tab. II. The first entry for each test problem in-
dicates the training vector which has been identified most
often by the algorithm when counting among all 80 snap-
shots considered. Again the “symmetry error” appears,
i. e. the parameters λ′x and λ′y both change sign when
compared to the true parameter values. As mentioned

λ′x λ′y κ′x κ′y

test 1 - 106 −1.0 −0.49 −1.0 2.01

test 1 - 73 −1.0 −0.34 −1.0 1.94

test 1 - 115 −1.0 −0.12 −1.0 1.75

test 2 - 130 −1.0 0.64 −1.0 7.69

test 2 - 146 1.0 1.0 −1.0 5.0

test 3 - 94 −1.0 0.32 −1.0 4.09

test 3 - 146 1.0 1.0 −1.0 5.0

test 3 - 136 −1.0 1.0 −1.0 5.0

TABLE II Identified model parameters for the three test
cases. Listed are the most pronounced hits counted among a
time trace of 80 snapshots. For example: “test 2 - 130” means
that model set number 130 has been identified for snapshots
belonging to test model set 2.

above, this is caused by the inability of our symmetric
feature choice which can not distinguish between h and
−h in the profiles. But more important is the result that
the parameter κ′y is identified quite well. Even though
we are dealing with a relatively small training set, the
location of the test profiles in eigenfeature space gives al-
ready a good estimate for the underlying model param-
eters. In order to increase the accuracy of interpolation
in such a search algorithm a sufficient amount of training
data would be essential. We also want to note that we
also made some efforts to identify a simple relationship
between the expansion components in eigenfeature space
and the corresponding model parameters. This was not
entirely successful and might be considered in detail in
future work. It seems that the length of the eigenspace
vector is strongly correlated to parameter κ′y, but other
mappings could not be found up to now.
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(b)

(a)

FIG. 8 Comparison of snapshots belonging to model param-
eter set number 20 (subfigure (a), κ′x = −1, κ′y = −1, λ′x = 1,
λ′y = 0.5, K′ = 1 and b′ = 100) and number 133 (subfigure
(b), κ′x = −1, κ′y = −1, λ′x = −1, λ′y = −0.6, K′ = 1 and
b′ = 100). Because λ′x and λ′y have both changed sign, the
profile of subfigure (b) has been multiplied by -1 to underline
the symmetry. More details on this are discussed in the text.

V. APPLICATION TO EXPERIMENTAL DATA

In this section we will give some thoughts on how to
apply the method described above in the case where only
a single experimental result is available, i. e. only a snap-
shot, no time series and no indication of the magnitude of
the (unscaled) model parameters. This represents a typi-
cal regression problem in model discovery, where one tries
to reproduce a given profile with the help of a model idea
like Eq. 1 and wants to find a set of best-fit parameters.
The procedure presented here is not based on an opti-
mization procedure to find best-fit parameters, rather it
is a straight-forward comparison with a catalog of known

results in an eigenfeature space that has to be set up ap-
propriately (by the proper choice of a feature function).
It is necessary to provide a sufficient set of training data
to cover the relevant space of possible results. For our
KS model studied this has been done by some scaling
recipe and this allowed to reduce the amount of train-
ing data needed. The question is now what to do, when
neither scaling parameters like in Sec. II are known, nor
some hint on order of magnitude of model parameters is
available. One way to deal with unknown scaling is to
go through possible ranges of h0 and l0, which have been
introduced in Sec. II. Given an experimental profile, a
change of h0 would just result in a change of magnitude of
the surface height h and a change in l0 would be a zoom in
or out of the original profile, while keeping the dimensions
and scaled heights in the same range as used for the train-
ing sets. In our case the ranges were −100 ≤ x, y ≤ 100
and typical ranges of h were of the order of 10. Because
each re-scaling via h0 and l0 immediately gives new val-
ues for the features (e. g. feature F (1), as shown in Fig. 3,
would be multiplied by h20 l

2
0) the resulting feature vector

representing the experimental profile would be located
at another point in eigenfeature space. Therefore, this
new location can be used to perform the nearest neigh-
bor search. Scanning through appropriate values of h0
and l0 is expected to give a minimum distance for some
training vector for a certain combination of h0 and l0.
Having found these optimal values, the model parame-
ters of the training vector can be re-scaled according to
Eqs. 4-6. Actually this identifies all parameters up to a
constant t0 which represents the time scale of the model.
But, this parameter is special anyway, because we lost
the information on the temporal behaviour of the model
when considering just a single snapshot. In other words,
all model parameters of KS models can be re-scaled by
a time scale t0 and a single snapshot is unchanged, just
appears at a different time. Consequently, the model pa-
rameters can only be determined down to a multiplicative
constant t0 but the ratios between the parameters can be
determined accurately. Determining the time constant
would need to take into account some information on the
temporal evolution of the system under consideration.

VI. CONCLUSION AND OUTLOOK

The complex problem of identifying model parameters
from the height profile of plasma-irradiated surfaces was
investigated along a Kuramoto-Sivashinsky type contin-
uum model. Forward simulations for different combina-
tions of model parameters were carried out to establish a
database for pattern recognition analysis. Time averaged
features constructed from the Fourier decomposition of
the height profiles showed significant differences for dif-
ferent model parameter combinations and could be used
to identify model parameters from single snapshots of the
temporal evolution of profiles.
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(a) (b) (c)

FIG. 9 Shown are the counts of identified training vectors when checked for three test profiles 1, 2 and 3 (labeled by (a), (b)
and (c) in the figure). The model parameters corrsponding to the largest number of hits are listed in Tab. II.

Expanding a given profile in the eigenbasis of the fea-
ture space of a set of training data of known model pa-
rameters showed promising first results for parameter
identification via a nearest-neighbor approach. To ex-
tract unknown parameters from new profiles which have
not been part of the construction of the eigenbasis of
the feature space, interpolation in the feature-model pa-
rameter space would be needed, but at present no clear
mapping could be found. However, a sufficient catalog
of simulation results together with an optimization pro-
cedure to adjust the scaling parameters for the surface
height and the structural length scale can be used to ob-
tain at least an estimate of the order of magnitude of
the model parameters. The results we present here were
actually found by trial and error. However, the quality
of the method depends on a suitable choice of feature
functions and other feature definitions yielded poorer re-
sults. Nevertheless, the selection presented here seems to
be a good starting point for further studies. At the mo-
ment, we cannot say how to systematically improve the
method by a specific choice of features and how many are
needed for optimal results. We therefore consider this
manuscript as a first step towards improving the method
presented and explained in this paper.
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