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We discuss a machine learning (ML) regression model to reduce the computational cost of disconnected diagrams 
in lattice QCD calculations. This method creates a mapping between the results of fermionic loops computed at 
different quark masses and flow times. The ML mapping, trained with just a small fraction of the complete data 
set, makes use of translational invariance and provides consistent result with comparable uncertainties over the 
calculation done over the whole ensemble, resulting in a significant computational gain.
1. Introduction

One of the computational challenges in lattice QCD calculations lies 
in the determination of the quark propagator, which not only serves as 
the foundation for calculating any fermionic correlation function but 
is also required in generating gauge ensembles with dynamical quarks. 
Computing the quark propagator involves inverting a very large sparse 
matrix representing the lattice Dirac operator. Fermionic disconnected 
diagrams appear in most hadron matrix element calculations, as well 
as studies of flavor singlet channels, and standard methods for their 
calculation are based on stochastic estimates, which are usually com-

putationally expensive.

In this study, we aim to leverage on recent advancements in Ma-

chine Learning (ML) applications to lattice QCD calculations used to 
reconstruct the Euclidean time dependence of complex observables by 
correlating them with simpler functions [1]. The findings of Ref. [1]

highlighted that ML techniques can effectively map various correla-

tion functions, such as 2- and 3-point functions when utilizing the 
same Markov chain. Building upon this observation we extend this ap-

proach to calculate fermion disconnected diagrams. These calculations 
involve the manipulation of significant amounts of data, dependent on 
the amount of stochastic sources and gauge configurations employed.

Moreover, exploiting the inherent translational invariance of the 
lattice theory, we augment our dataset to thoroughly investigate cor-

relations. Utilizing numerous stochastic sources and translational in-
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variance, we establish both training and bias-correction sets, thereby 
strengthening the robustness and precision of our analyses.

The gradient flow [2,3] provides a favorable regulator of short-

distance singularities due to its reduced operator mixing, essentially 
trading power divergent lattice spacing effects with a milder finite 1∕𝑡
dependence. By keeping the flow time 𝑡 fixed, one can then perform 
the continuum limit with no renormalization ambiguities. An example 
of the advantage of the use of the Gradient Flow is the simplified cal-

culation of the quark content of nucleons [4,5] or the resolution of the 
problem of power divergences for higher dimensional operators [6]. The 
application of the gradient flow to the calculation of fermionic discon-

nected diagrams is beneficial both to simplify the renormalization and 
to improve the signal-to-noise ratio.

In Sec. 2 we describe the stochastic method we use to determine 
the fermionic disconnected diagrams. In Sec. 3 we study the correlation 
between data and, in Sec. 4 we describe the algorithm and present our 
results.

2. Fermionic disconnected diagrams

We consider a lattice of spacing 𝑎 and box size 𝑉 =𝐿3×𝑇 , with Dirac 
fermions in the fundamental representation of SU(𝑁c = 3), 𝜓𝑎,𝛼, 𝜓𝑎,𝛼
(𝑎 = 1, … , 𝑁c = 3 and 𝛼 = 1, … , 4). We adopt periodic boundary con-

ditions for all fields, with the exception that the boundary condition in 
Euclidean time is anti-periodic for fermion fields. These boundary con-

ditions preserve translational invariance. In lattice QCD, the calculation 
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of physical observables involving fermions, requires the determination 
of the quark propagators, 

[
𝜓𝑎,𝛼(𝑥)𝜓𝑏,𝛽 (𝑦)

]
F
= 𝑆𝑎𝑏

𝛼𝛽
(𝑥, 𝑦), where with [⋅]F

we indicate a fermion contraction. For simple correlation functions, like 
the kaon or the nucleon 2-point functions, one requires only the calcu-

lation of one column of the inverse, 𝑆 , of the lattice Dirac operator, 
𝐷,

𝐷𝑎𝑏
𝛼𝛽
(𝑥, 𝑦)𝑆𝑏𝑐0

𝛽𝛾0
(𝑦, 𝑧0) =

1
𝑎4
𝛿𝑎𝑐0

𝛿𝛼𝛾0
𝛿𝑥𝑧0

, (1)

where the source location, 𝑧0, and the corresponding spin and color in-

dices, 𝛾0 and 𝑐0, are fixed. Repeated indices, 𝛽, 𝑏, and 𝑦 in this case, 
are summed over. To determine all-to-all propagators, where the source 
location is not fixed, or to calculate quantities related to all-to-all prop-

agators, like the trace of the quark propagator, we have to rely on 
stochastic methods.

To calculate the all-to-all propagator one takes a set of 𝑟 = 1, … , 𝑁𝜂
of complex random vectors 𝜂(𝑟)𝑎𝛼 (𝑥) that satisfy

lim
𝑁𝜂→∞

⟨
𝜂𝑎𝛼(𝑥)𝜂𝑏𝛽 (𝑦)∗

⟩
𝜂
= 𝛿𝑎𝑏𝛿𝛼𝛽𝛿𝑥𝑦 , (2)

where with ⟨⋅⟩𝜂 we indicate the average over 𝑁𝜂 stochastic vectors

⟨
𝜂𝑎𝛼(𝑥)𝜂𝑏𝛽 (𝑦)∗

⟩
𝜂
= 1
𝑁𝜂

𝑁𝜂∑
𝑟=1
𝜂(𝑟)
𝑎𝛼
(𝑥)𝜂(𝑟)∗

𝑏𝛽
(𝑦) . (3)

To estimate the all-to-all propagator one can now solve

𝐷𝑎𝑏
𝛼𝛽
(𝑥, 𝑦)𝜙𝑏𝛽 (𝑦) =

1
𝑎4
𝜂𝑎𝛼(𝑥) . (4)

The full propagator is then reconstructed by the unbiased estimator

𝑆𝑎𝑏
𝛼𝛽
(𝑥, 𝑦) = lim

𝑁𝜂→∞

⟨
𝜙𝑎𝛼(𝑥)𝜂𝑏𝛽 (𝑦)∗

⟩
𝜂
, (5)

up to noise contributions at finite 𝑁𝜂 . The relative total noise of the esti-

mator is of the order of O(
√
12𝑉 ∕𝑁𝜂) and one needs variance reduction 

techniques to reach a signal-to-noise ratio of O(1). One example of vari-

ance reduction would be the use of time-dilution [7]. Another choice is 
to use the one-end trick [8] and the generalization called linked stochas-

tic sources [9] where the stochastic vector is non-vanishing only for 
specific color, spin or space-time indices. We denote linked stochastic 
sources with 𝜂(𝑏,𝛽)𝑎𝛼 (𝑥) where the color and Dirac indices 𝑏 and 𝛽 are 
fixed

𝜂(𝑏,𝛽)
𝑎𝛼

(𝑥) = 𝛿𝑎𝑏𝛿𝛼𝛽𝜂𝑎𝛼(𝑥) . (6)

We now solve for all the fixed couple of values (𝑎0, 𝛼0)

𝐷𝑎𝑏
𝛼𝛽
(𝑥, 𝑦)𝜙(𝑎0𝛼0)

𝑏𝛽
(𝑦) = 1

𝑎4
𝜂
(𝑎0𝛼0)
𝑎𝛼 (𝑥) . (7)

For different quark flavors, 𝑓 = 𝓁, 𝑠, one obtains different solutions 
𝜙𝑓 (𝑦). To not clutter the notation, we leave the flavor index unspecified 
when discussing the generalities of the quark propagator determination. 
The quantity of interest is the quark propagator, 𝑆𝑎0𝑏0

𝛼0𝛽0
(𝑥, 𝑦) that can be 

determined for each gauge configuration up to noise contributions by[
𝜓𝑎0 ,𝛼0

(𝑥)𝜓𝑏0 ,𝛽0 (𝑦)
]

F
= 𝑆𝑎0𝑏0

𝛼0𝛽0
(𝑥, 𝑦) =

⟨
𝜙
(𝑎0 ,𝛼0)
𝑐𝛾 (𝑦)𝜂(𝑏0𝛽0)𝑐𝛾 (𝑥)∗

⟩
𝜂
. (8)

Reintroducing a flavor index, the quark condensates at vanishing 
flow times is denoted by

⟨
𝜓𝑓𝜓𝑓

⟩
= 𝑎

𝑇

∑
𝑥4

⟨
𝐶
𝑓

𝜓𝜓
(𝑥4;𝜂,𝑈 )

⟩
G,𝜂
, (9)

where ⟨⋅⟩G,𝜂 denotes the average over the gauge ensemble and the 
stochastic sources. 𝐶𝑓

𝜓𝜓
(𝑥4; 𝜂, 𝑈 ) is evaluated on a fixed gauge back-
2

ground, 𝑈 (𝑥, 𝜇), and on a given stochastic source, 𝜂(𝑥)
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𝐶
𝑓

𝜓𝜓
(𝑥4;𝜂,𝑈 )=− 𝑎3

𝐿3

∑
𝐱

∑
𝑎0 ,𝛼0

𝜙
𝑓,(𝑎0𝛼0)
𝑐𝛾 (𝐱, 𝑥4)𝜂

(𝑎0 ,𝛼0)
𝑐𝛾 (𝐱, 𝑥4)∗ , 𝑓=𝓁, 𝑠 .

(10)

The specific choice of the stochastic vector 𝜂(𝑥) is not critical as far as 
the condition (3) is satisfied and its variance remains within acceptable 
limits. For a complex matrix like 𝐷𝑎𝑏

𝛼𝛽
(𝑥, 𝑦) a standard choice is to use 

stochastic vectors belonging to Z4 , i.e. for each 𝑎, 𝛼, 𝑥 the vector 𝜂𝑎𝛼(𝑥)
takes one of the values {±1, ±𝑖} with the same probability (see Ref. [10]

and refs. therein for a discussion on the choice of stochastic vectors and 
variance reduction techniques).

In this work we also consider the flowed scalar quark condensate⟨
𝜒𝑓𝜒𝑓

⟩
= 𝑎

𝑇

∑
𝑥4

⟨
𝐶
𝑓

𝜒𝜒
(𝑥4, 𝑡;𝜂,𝑈 )

⟩
G,𝜂

(11)

where

𝐶𝜒𝜒 (𝑥4, 𝑡;𝜂,𝑈 ) = 𝑎3

𝐿3

∑
𝐱

∑
𝑎,𝛼

[
𝜒
𝑎

𝛼
(𝐱, 𝑥4, 𝑡)𝜒𝑎𝛼 (𝐱, 𝑥4, 𝑡)

]
F
. (12)

It is assumed that the fermion fields 𝜒(𝑥, 𝑡) and 𝜒(𝑥, 𝑡) satisfy the gra-

dient flow equations of Refs. [2,3], but the results of this work do not 
depend on the particular choice of gradient flow equations.

The first step is to solve for each pair (𝑎0, 𝛼0) the equation

𝐷𝑎𝑏
𝛼𝛽
(𝑥, 𝑦)𝜙(𝑎0𝛼0)

𝑏𝛽
(𝑦; 0, 𝑡) = 1

𝑎4
𝜉
(𝑎0𝛼0)
𝑎𝛼 (𝑥; 𝑡,0) , (13)

where the source

𝜉
(𝑎0𝛼0)
𝑎𝛼 (𝑥; 𝑡,0) = 𝑎4

∑
𝑢

𝐾(𝑢, 𝑥; 𝑡,0)†𝜂(𝑎0𝛼0)𝑎𝛼 (𝑢) (14)

has to be determined for each value of the flow time 𝑡 solving the adjoint 
flow equation(
𝜕𝑠 +Δ

)
𝜉
(𝑎0𝛼0)
𝑎𝛼 (𝑥; 𝑡, 𝑠) = 0 , 𝜉

(𝑎0𝛼0)
𝑎𝛼 (𝑥; 𝑡, 𝑡) = 𝜂(𝑎0𝛼0)𝑎𝛼 (𝑥) , (15)

to 𝑠 = 0. The kernel 𝐾(𝑥, 𝑦; 𝑡, 𝑠), defined in Ref. [3], is the solution of 
the gradient flow equation(
𝜕𝑡 −Δ

)
𝐾(𝑥, 𝑦; 𝑡, 𝑠) = 0 , 0 ≤ 𝑠 ≤ 𝑡 , (16)

with 𝐾(𝑥, 𝑦; 𝑡, 𝑡) = 1∕𝑎4𝛿𝑥𝑦 for all 𝑡 ≥ 0. The stochastic vector 𝜂(𝑎0𝛼0)𝑎𝛼 (𝑥) is 
the linked vector adopted in the 𝑡 = 0 case defined in Eq. (6). The flowed 
scalar condensate can then be determined on a single gauge configura-

tion by the expression

𝐶
𝑓

𝜒𝜒
(𝑥4, 𝑡;𝜂,𝑈 )=− 𝑎

3

𝐿3

∑
𝐱

∑
𝑎0 ,𝛼0

𝑎4
∑
𝑦

𝐾(𝑥, 𝑦; 𝑡,0)𝜙(𝑎0𝛼0)𝑐𝛾 (𝑦; 0, 𝑡)𝜂(𝑎0 ,𝛼0)𝑐𝛾 (𝑥)∗ ,

(17)

where to compute

𝜙
(𝑎0𝛼0)
𝑐𝛾 (𝑥; 𝑡, 𝑡) = 𝑎4

∑
𝑦

𝐾(𝑥, 𝑦; 𝑡,0)𝜙(𝑎0𝛼0)𝑐𝛾 (𝑦; 0, 𝑡) , (18)

is sufficient to solve the gradient flow equation(
𝜕𝑠 −Δ

)
𝜙
(𝑎0𝛼0)
𝑐𝛾 (𝑥; 𝑠, 𝑡) = 0 , (19)

for 𝑠 = 𝑡 where the initial condition at 𝑠 = 0 is given by the solution of 
Eq. (13), 𝜙(𝑎0𝛼0)𝑐𝛾 (𝑦; 0, 𝑡).

3. Correlation maps and translation invariance

For our numerical experiment we consider the lattice ensembles sum-

marized in Table 1. They have been generated [11,12] using 𝑁𝑓 = 2 +1
dynamical fermion flavors all regulated with a non-perturbative O(𝑎) 
clover-improved lattice fermion action and the Iwasaki gauge action. 
On these ensembles we have calculated, using stochastic sources as de-
scribed in the previous section, the Euclidean time dependence of the 
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Table 1

Summary of the lattice bare parameters for the ensembles used in this work. 𝑁𝐺 is the number of gauge 
configurations selected from Ref. [11,12]. All the other labels should be self-explanatory.

Label 𝛽 𝜅𝓁 𝜅𝑠 𝑚𝜋 [MeV] 𝑚𝐾 [MeV] 𝑎[fm] 𝐿∕𝑎 𝑇 ∕𝑎 csw 𝑁𝐺

M1 1.90 0.13700 0.1364 699.0 789.0 0.0907 32 64 1.715 399

M3 1.90 0.13754 0.1364 409.7 644.0 0.0907 32 64 1.715 450

Fig. 1. Graphical representation of the correlation between the light and strange quark scalar condensates at 𝑡 = 0 for several gauge configurations, Euclidean time 
coordinates and stochastic sources on 𝑀1 ensemble. Left: correlation between light and strange quark scalar condensates for selected values of 𝑥4. The data shown 
correspond to the training set of 𝑁𝐺,𝑇 = 50 gauge configurations and 𝑁𝜂 = 1 stochastic source. Right: Same as the left plot. The data shown correspond to 𝑁𝐺,𝑇 = 50, 
a fixed value of 𝑥4 = 𝑇 ∕2 and a selection of stochastic sources.

Fig. 2. Graphical representation of the correlation between the light and strange quark scalar condensates at 𝑡 = 0 for a single stochastic source for 𝑀1 and 𝑀3
ensembles, 𝑁 = 50 configurations and 𝑇 ∕𝑎 = 64 Euclidean time coordinates. These are the sets that have been used to train the ML mapping (see Sec. 4).
𝐺,𝑇

unflowed and flowed light and strange scalar condensates. On a fixed 
background gauge configurations, they are determined using Eqs. (10)

and (17), respectively. We have then analyzed the correlation between 
the 2 observables. In Figs. 1–2 we show correlation plots between the 
light and strange quark condensates at vanishing flow time, 𝑡 = 0, cal-

culated on 𝑀1 and 𝑀3 ensembles. We observe a strong correlation of 
the data independently on the Euclidean time where we calculate the 
condensate (see Fig. 1(a)). This is a consequence of translational in-

variance and is consistent with the observation that averaging over all 
lattice points provides a better statistical precision, making use of the 
full lattice. In this context we want to take advantage of translational 
invariance to enlarge the data set used to train the ML mappings. A sim-

ilar strong correlation is observed varying the stochastic source used for 
the determination of the quark propagator (see Fig. 1(b)). This obser-

vation enables us to use one or more stochastic sources in the training 
set, allowing for a relatively small number of gauge configurations for 
3

training. In other words, this approach increases the dimensionality of 
the data space that is partitioned into training, bias, and unlabeled sets. 
In Fig. 2 we show the correlation plot used to train the ML model on the 
ensembles 𝑀1 and 𝑀3, where we have used 𝑁𝐺,𝑇 = 50 gauge configu-

rations, all the 64 Euclidean time values of 𝑥4∕𝑎, and 𝑁𝜂 = 1 stochastic 
source. Details on the choice of the training set are discussed in Sec. 4. 
From Fig. 2 we note that for ensembles at lighter pion masses a simi-

lar, but slightly weaker, correlation is measured. The weaker correlation 
could be caused by a generic loss of correlation for lighter pion ensem-

bles or by a larger mass difference between the correlated observables. 
This does not prevent us to successfully test our ML method also for the 
ensemble 𝑀3.

We have observed a similar strong correlation also between con-

densates calculated at different flow times on the same ensembles. The 
expected correlation between observables evaluated on the same ensem-

bles in the context of ML modeling could help speed up the calculation 

of observables from lattice QCD simulations.
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4. Decision tree mapping of correlations

To take advantage of the correlations observed and described in the 
previous section we have scrutinized a few supervised machine learning 
methods, and we have found, like it was found in Ref. [1], that a decision 
tree (DT) is sufficient to capture the correlation between data. There are 
perhaps other maps, like specific neural networks, that might be able to 
describe the correlations equally well or even better in certain cases, but 
for this first investigation DT is sufficiently accurate.

4.1. Description of the algorithm

Decision Tree (DT) stands as a non-parametric supervised learning 
technique employed for regression tasks involving the prediction of con-

tinuous numerical outcomes, by recursively partitioning the input space 
into subsets based on feature conditions and assigning a constant value 
to each resulting region [13,14]. The primary aim is to build a model 
that can predict the value of a target variable by acquiring basic decision 
rules deduced from the features of the data.

Based on the observation [1] that DTs can map correlations between 
lattice QCD data, we trained a DT to determine fermion disconnected 
diagrams at a given quark mass, or flow time, given a fermion discon-

nected diagram calculated at a different quark mass or flow time. We 
take a subset of the total amount of data to train a ML model, a DT in this 
case, and calculate the corresponding bias, taking advantage of the many 
stochastic sources used for the calculation of disconnected diagrams and 
translational invariance of the lattice theory. To train the DT we divide 
the total set of data 𝑁 into labeled, 𝑁𝐿, and unlabeled data, 𝑁𝑈 . The 
labeled data are divided into the subset 𝑁𝑇 to train the machine learn-

ing (ML) model, and the subset 𝑁𝐵 to estimate the bias correction, with 
𝑁𝐿 =𝑁𝑇 +𝑁𝐵 . The data we consider in this numerical experiment are 
fermionic disconnected diagrams calculated at 2 different quark masses 
or flow times. If we denote with 𝑁𝜂 the number of stochastic sources, 
𝑁𝐺 the number of gauge configurations, and we make use of trans-

lational invariance, we can use as a complete set of data for a given 
condensate 𝑁 = 𝑁𝜂 × 𝑁𝐺 × 𝑇 ∕𝑎 points. As labeled data we consider 
the subset constituted by 𝑁𝐿 =𝑁𝜂,𝐿 ×𝑁𝐺 × 𝑇 ∕𝑎, further divided into 
the training set 𝑁𝑇 = 𝑁𝜂,𝐿 × 𝑁𝐺,𝑇 × 𝑇 ∕𝑎 and the bias correction set 
𝑁𝐵 =𝑁𝜂,𝐿 ×𝑁𝐺,𝐵 × 𝑇 ∕𝑎, where 𝑁𝐺 =𝑁𝐺,𝑇 +𝑁𝐺,𝐵 . We have decided 
to use the same number of sources for the training and bias set and 
utilize the full ensemble for the labeled and unlabeled data. Different 
choices are indeed possible and in Secs. 4.3 and 5 we analyze the de-

pendence on the size of the training and bias set. Once the ML model has 
been trained, it is applied to the unlabeled data 𝑁𝑈 =𝑁𝜂,𝑈 ×𝑁𝐺 ×𝑇 ∕𝑎, 
where 𝑁𝜂,𝑈 = (𝑁𝜂 −𝑁𝜂,𝐿). This implies that, fixed the labeled data, we 
have a single DT model for each pair of observables and each ensemble.

Unlike Ref. [1], we partitioned the labeled and unlabeled datasets 
based on the selected stochastic sources, utilizing the entire ensemble 
for both. Additionally, we leveraged translation invariance and trained 
the ML model using features across the entire Euclidean time extent of 
the lattice. In alignment with the approach employed in Ref. [1], we 
segmented the bias and training sets by stratifying the gauge configura-

tions.

To illustrate, we consider determining an observable 𝑂 for given val-

ues of external parameters such as the quark mass 𝑚 or the flow time 𝑡. 
The DT is trained using features comprising the same observable, 𝑂𝑓 , 
at different values of the quark mass or flow time. These features are 
evaluated on a subset of the total dataset, referred to as the training 
set. The mapping obtained through this training between the two ob-

servables is denoted as Γ𝑓 , where the subscript 𝑓 indicates that the 
mapping depends on the choice of the external parameters. In Sec. 4.3, 
we demonstrate that this mapping is independent of the choice and size 
of the training set. After the training, the target quantity 𝑂Γ(𝑈, 𝜂, 𝑥4) is 
obtained by applying the ML mapping to the features on the unlabeled 
4

data, i.e.
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𝑂Γ(𝑈,𝜂, 𝑥4) = Γ𝑓 [𝑂𝑓 (𝑈,𝜂, 𝑥4)] . (20)

The dependence of 𝑂Γ on the external parameters 𝑚, and 𝑡 is left im-

plicit. We keep explicit the dependence on the variables 𝑈, 𝜂, 𝑥4 labeling

the data set. The ML mapping Γ𝑓 does not depend explicitly on the train-

ing data, but it is evaluated on features that depend on the specific gauge 
configuration, stochastic source, and Euclidean time and thus so is the 
output observable.

The correlation function is then obtained averaging on the unlabeled 
data

1
𝑁𝐺

∑
𝑈

1
𝑁𝜂,𝑈

∑
𝜂𝑈

𝑂Γ(𝑈,𝜂𝑈 ,𝑥4) , (21)

where with 
∑
𝑈 we indicate a sum of the gauge configurations and 

∑
𝜂𝑈

indicates the sum over all the sources belonging to the unlabeled data. 
In Sec. 4.2 we discuss the results including a bias correction.

The first example we consider is 𝑂𝑓 = 𝐶𝑠
𝜓𝜓

(𝑥4; 𝜂, 𝑈 ), i.e. the strange 
scalar quark condensate, and 𝑂 = 𝐶𝑙

𝜓𝜓
(𝑥4; 𝜂, 𝑈 ), i.e. the light scalar 

quark condensate. Both are defined in Eq. (10). The second example 
we consider is 𝑂𝑓 = 𝐶𝑙

𝜒𝜒
(𝑥4, ̄𝑡; 𝜂, 𝑈 ) i.e. the light quark scalar conden-

sate at flow time 𝑡, and 𝑂 = 𝐶𝑙
𝜒𝜒

(𝑥4, 𝑡; 𝜂, 𝑈 ), i.e. the same condensate at 
a different flow time 𝑡. This quantity is defined in Eq. (17).

The DT mapping, Γ, is determined on the training set minimizing a 
loss function given by the mean squared error, and for each node, the 
algorithm considers all the input data and chooses the best split; nodes 
are expanded until all leaves contain a single sample. A brief discussion 
and the summary of the other hyperparameters of the model is found in 
Appendix A.

The mapping is then applied to the unlabeled data of the input 
quantity for each 𝑁𝜂,𝑈 =𝑁𝜂 −𝑁𝜂,𝐿 stochastic source, each gauge con-

figuration, and each 𝑥4∕𝑎. To avoid autocorrelation in the training pro-

cedure, we have chosen the set of 𝑁𝐺,𝑇 = 50 gauge configurations, each 
maximally separated in the Markov chain. Specifically, we select gauge 
configurations separated by 40 and 45 molecular dynamics trajectories 
for the two ensembles. When applying the ML mapping to the unlabeled 
data, we first average over the stochastic sources, then build blocks of 
7 elements for the ensemble 𝑀1 and 9 elements for the ensemble 𝑀3. 
Subsequently, a standard bootstrap procedure is applied with 𝑁𝑏 = 1000
bootstrap samples. This allows for the calculation of the statistical error 
of the resulting condensate.

We have studied the dependence of the signal-to-noise ratio (SNR) 
of the scalar condensate on the number of stochastic sources, 𝑁𝜂 , for 
𝑡∕𝑎2 = 0 and 𝑡∕𝑎2 = 0.5, 0.7 as representative positive flow times, and 
the full set of gauge configurations available in the ensembles labeled 
𝑀1 and 𝑀3 (see Table 1 in the next section).

We did not attempt to optimize the number of sources and chose 
𝑁𝜂 = 20 for all our calculations.1

Even though this might not be the optimal choice, it is sufficient to 
test the ML algorithm we propose in this work. It is worth noting that 
our numerical experiments indicate that a different number of stochastic 
sources would be needed to saturate the SNR for 𝑡 > 0, as a result of the 
smoothing effect of the gradient flow.

For the training we use 𝑁𝜂,𝐿 = 1 stochastic source and 𝑁𝐺,𝑇 = 50
gauge configurations. This gives us, for both ensembles, a total of 𝑁𝑇 =
3200 data points to train the ML model.

In Fig. 3, we present the distributions of three condensates, compar-

ing the results obtained from the direct calculation of the condensates 
with those derived from the ML mapping. This comparison illustrates 
how the ML approach can replicate the result obtained with a direct 
calculation capturing the essential features of the distribution of the 
condensates. For a more quantitative analysis, we present averages and 

1 For the analysis at flow time 𝑡∕𝑎2 = 1.0 for ensemble 𝑀3, we used a total of 

𝑁𝜂 = 30 stochastic sources (see Table 2).
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Fig. 3. Distributions on the unlabeled data of quark condensates at 𝑥4 = 𝑇 ∕2 from a direct calculation and from the ML mapping.

Fig. 4. Comparison of the light quark condensate on the ensemble 𝑀1 between the ML result and the direct (standard) calculation of the same condensate as a 
function of Euclidean time. The comparison is performed on the unlabeled data.
statistical errors in the next section, including bias corrections for fur-

ther accuracy.

4.2. Results

The results obtained with the ML mapping, cfr. Eq. (21), have been 
corrected for possible biases. To estimate the bias correction we use the 
same stochastic sources chosen for the training set, 𝜂𝐿 , and the remain-

ing 𝑁𝐺,𝐵 =𝑁𝐺 −𝑁𝐺,𝑇 gauge configurations. The bias-corrected result 
is given by

⟨𝑂Γ⟩𝐺,𝜂 (𝑚, 𝑡, 𝑥4) = 1
𝑁𝐺

∑
𝑈

1
𝑁𝜂,𝑈

∑
𝜂𝑈

𝑂Γ(𝑈,𝜂𝑈 ,𝑥4) +

+ 1
𝑁𝐺,𝐵

∑
𝑈𝐵

1
𝑁𝜂,𝐿

∑
𝜂𝐿

[
𝑂(𝑈𝐵, 𝜂𝐿,𝑥4) −𝑂Γ(𝑈𝐵, 𝜂𝐿,𝑥4)

]
,

(22)

where the bias correction is evaluated on the bias set. The calculation 
of the bias presented in this section is an extension of the calculation of 
Ref. [1], where we include the possibility of choosing different stochas-

tic sources where the fermionic disconnected diagram is evaluated.

We have determined the light quark condensate at 𝑡 = 0 training 
the ML mapping as described in the previous section using the strange 
quark condensate as features, and then calculated the bias corrections 
as described above. We have also used a ML mapping to determine the 
flowed scalar quark condensate on a set of flow times. The features used 
to train the ML mapping are the light quark condensate at 𝑡∕𝑎2 = 0.5 for 
the ensemble 𝑀1 and 𝑡∕𝑎2 = 1.0 for the ensemble 𝑀3.

Results after the training are shown in Figs. 4–6, where the ML re-
5

sults (orange data) are compared with a standard determination of the 
same condensates on the unlabeled data (blue data). With this choice 
both the standard and the ML determinations use a common set of data 
simplifying the comparison of statistical errors. Figs. 4 and 6 show the 
results for the light quark condensate at 𝑡∕𝑎2 = 0 for the 2 ensembles 
𝑀1 and 𝑀3. The ML mappings are obtained using the strange quark 
condensate on the same ensembles. Fig. 5 shows the result for the light 
quark condensate at 𝑡∕𝑎2 = 0.7 obtained with a ML mapping trained 
with features given by the same condensate at 𝑡∕𝑎2 = 0.5.

For these 3 cases, in the left plots we show the comparison between 
the ML and the direct determinations before any bias correction is ap-

plied, while the middle plots are obtained after bias correction. The right 
plots show the deviation between the direct and the ML calculation with 
bias correction, normalized by the total standard deviation.

𝛿 =
⟨𝑂⟩ (𝑥4) − ⟨𝑂Γ⟩ (𝑥4)√

𝜎2
𝑂Γ

+ 𝜎2
𝑂

. (23)

The statistical errors are calculated as follows. First, we apply the ML 
mapping to the unlabeled data, after averaging over the stochastic 
sources, then we build blocks of 10 elements and a standard bootstrap 
procedure is performed with 𝑁boot = 1000 bootstrap samples. In this 
way, we determine the error bars of both the condensate for each 𝑥4∕𝑎, 
and the average over Euclidean time.

Comparing the plots before and after bias corrections we note that 
for both analysis for the ensemble 𝑀1 the bias correction does not have 
any impact, because the ML prediction and the direct determination 
already agree perfectly before applying the bias correction. In the case 
of the ensemble 𝑀3 in Fig. 6 we observe a slight bias of order of 1 𝜎
that is corrected after applying a bias correction. In order to properly 

understand the dependence of the bias on the parameters of the data 
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Fig. 5. Comparison of the light quark condensate on the ensemble 𝑀1 at flow time 𝑡∕𝑎2 = 0.7 between the ML result and the direct (standard) calculation of the 
same condensate as a function of Euclidean time. The comparison is performed on the unlabeled data.

Fig. 6. Comparison of the light quark condensate on the ensemble 𝑀3 between the ML result and the direct (standard) calculation of the same condensate as a 
function of Euclidean time. The comparison is performed on the unlabeled data.

Fig. 7. Condensates determined directly on the unlabeled data (blue band) compared with the ML predictions as a function of the size of the training set 𝑁𝐺,𝑇 for 
different source choices 𝜂(𝑟). No bias correction is applied to the ML results.
would require a much larger numerical study beyond the scope of this 
work. Comparing the difference of the strange and light quark masses 
in the ensemble 𝑀1 and 𝑀3 (cfr. Table 1) seems to suggest that at fixed 
labeled sets the larger mass difference in the ensemble 𝑀3 implies a 
larger bias.

To complement this observation, we have examined the impact of 
the training set size on the ML predictions prior to bias corrections, and 
the results are shown in Fig. 7. In Figs. 7(a) and 7(b), showing the results 
for the ensemble 𝑀1, we observe that increasing the size of the training 
set for 𝑁𝐺,𝑇 > 50 provides no advantage consistently with the fact that 
for 𝑁𝐺,𝑇 = 50 we observe no bias. For the ensemble 𝑀3, with the results 
6

shown in Fig. 7(c), we observe a slight improvement increasing the size 
of the training set, but already for 𝑁𝐺,𝑇 = 100 we observe no significant 
deviation between the direct and ML calculation. This analysis confirms 
that the bias correction is necessary only for the ensemble 𝑀3 . Given 
the cost-effectiveness of the training process, while it is computationally 
efficient to increase the size of the training set for the ensemble 𝑀3 to 
remove bias, we opted for a more conservative approach by calculating 
the bias in all ML determinations.

Using the trained DT we have computed the light quark conden-

sate as a function of flow time across the entire range 0 ≤ 𝑡∕𝑎2 ≤ 2 for 
the ensembles 𝑀1 and 𝑀3. The features employed to train the ML map-

ping consist of the light quark condensate at 𝑡∕𝑎2 = 0.5 for the ensemble 

𝑀1 and 𝑡∕𝑎2 = 1.0 for the ensemble 𝑀3. In Fig. 8, we present the ML 
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Fig. 8. Flow time dependence of the light quark scalar condensate. The plot 
shows the results obtained with a ML mapping and the results obtained in 
Ref. [3]. With orange crosses we also indicate flow times where we have avail-

able a direct calculation.

results showing the light quark condensate as a function of flow time 
𝑡∕𝑎2. To validate our result we show the results of a direct calculation 
at 𝑡∕𝑎2 = 0.7, 1.0 for the ensemble 𝑀1 and at 𝑡∕𝑎2 = 2.0 for the ensem-

ble 𝑀3. For comparison we also show results obtained at 𝑡∕𝑎2 = 1.0 for 
the ensemble 𝑀3. The only calculation of the same quantity available 
in the literature is the result obtained in Ref. [3] with a direct calcu-

lation of the disconnected diagrams for larger values of the flow time. 
While our calculation does not cover the same range of flow times it 
gives us a qualitative comparison. The increase at small flow time for 
our data is easily explained. The small flow time region covered by the 
ML calculation shows the power divergent contribution proportional to 
𝑚∕𝑡 and possibly other power divergent contributions vanishing in the 
continuum limit. In the chiral and continuum limit Ward identities con-

nect the flowed condensate with the physical condensate [3,15], and 
the power divergence in 1∕𝑡 vanishes. In Fig. 8 we observe, at short flow 
time, the 1∕𝑡 contribution that is suppressed at lower quark masses. For 
larger flow times and smaller quark masses, as described in Ref. [3], the 
1∕𝑡 contribution is small and the remaining logarithmic contribution is 
canceled by the contribution of the vacuum-to-pion pseudoscalar matrix 
element evaluated at the same flow time.

4.3. Robustness of the ML mapping

To test the robustness of the DT we trained we have varied specific 
hyperparameters, like the number and the choice of gauge configura-

tions and stochastic sources used for the training. We have studied the 
dependence on the choice of the training set considering different, ran-

domly chosen, sets of 𝑁𝐺,𝑇 = 50 gauge configurations and different 
choices for the stochastic source.

In Fig. 9 we show the ML calculation for 10 different random choices 
of the 𝑁𝐺,𝑇 = 50 gauge configurations used for the training, and com-

pare it with the full direct calculation of the complete set, 𝑁𝑈 , of 
unlabeled data. We hardly observe any deviation between all the cal-

culations. In Fig. 10 we show the dependence of the ML calculations on 
the choice of the stochastic source and on the number of gauge configu-

rations, 𝑁𝐺,𝑇 , used for the training. We observe no significant deviation 
when we choose a different stochastic source or when we vary the size 
of the training set. We conclude that changing the training set or its 
size results in little to no deviation between the different ML mappings 
7

obtained and the direct standard calculation.
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5. Conclusions

We have investigated an application of supervised Machine Learning 
(ML) techniques for lattice QCD calculations. Fermionic disconnected 
diagrams are among the most expensive quantities to calculate in any 
lattice QCD computation. We have trained a ML mapping to speed up 
the calculation of fermionic disconnected diagrams for a set of external 
parameters such as the quark mass and the flow time. The mapping is a 
decision tree trained with a subset of the full set of data usually analyzed 
for a standard lattice QCD calculation. After applying bias correction, 
we find that the condensates calculated with ML deviate at most by 1
sigma over the whole set of parameters investigated, while maintaining 
consistent statistical uncertainties.

The computational gain depends on whether the ML mapping is 
trained using 2 different quark masses or 2 different flow times. In the 
first case, given the time needed for a standard lattice QCD calculation 
of the light condensate on 𝑁𝑈 data, the gain applying a ML mapping is 
given by

Gain =
(
𝑡𝑠

𝑡𝑑

𝑁

𝑁𝑈
+
𝑁𝐿

𝑁𝑈

)
, (24)

where 𝑡𝑑,𝑠 label the time needed to calculate the down, or strange, con-

densate for a single stochastic source and single gauge configuration. 
We have estimated the timings for the calculation of the quark propa-

gators, and conclude that the ML calculation requires 72 − 76% of the 
time needed for a standard computation. The gain depends almost solely 
on the difference in computer time needed for the calculation of the 2
quark propagators used in the ML method. We have compiled the gains 
achieved in the two ensembles we have analyzed in Table 2. The gains 
are expected to increase further for lighter pion ensembles, owing to the 
larger difference between the strange and quark masses. However, it re-

mains to be investigated whether there is sufficient data correlation to 
effectively apply this ML method in such cases.

In the case of different flow times the gain depends on the number 
of flow times 𝑁𝑡 where the condensate is determined and on the differ-

ent flow times used in the training procedure. In the case we use the 
ML mapping to compute the chiral condensate at a single flow time, in 
Table 2 we have collected the gains achieved in three different cases. 
The gains are also shown in the left plot of Fig. 11 as a function of the 
flow time 𝑡∕𝑎2 of the calculated condensate. For this plot the features 
are given by the light quark condensate at flow time 𝑡∕𝑎2 = 0.5 for the 
ensemble 𝑀1 and 𝑡∕𝑎2 = 1.0 for the ensemble 𝑀3. We observe an al-

most linear gain as a function of the difference between the input and 
output flow time up to a factor 3 for the ensemble 𝑀1 at flow time 
𝑡∕𝑎2 = 2.0 and a factor 1.8 for the ensemble 𝑀3. We do not show any 
data for 𝑡 < 𝑡 because there is no gain in trying to apply ML to compute 
the condensate for flow times smaller than the input feature.

If we train the ML mapping using the same features (𝑡∕𝑎2 = 0.5 for 
the ensemble 𝑀1 and 𝑡∕𝑎2 = 1.0 for the ensemble 𝑀3) for many flow 
times 𝑡 > 𝑡 we obtain a larger gain. In the right plot of Fig. 11 we show 
the gain if we train the ML for flow times at intervals of 0.1 for 𝑡 > 𝑡 as 
a function of the maximal flow times utilized, 𝑡max∕𝑎2. In this case we 
obtain gains of a factor 10 for 𝑀3 and 12 for 𝑀1.

Machine Learning methods can provide powerful computational 
tools to make better use of the plethora of data produced in standard 
lattice QCD calculations. In this work we have successfully applied 
a supervised ML method to speed up the calculation of disconnected 
fermionic diagrams. We consider this work as a first attempt into the 
exploration of novel paths for the determination of the quark propaga-

tor and fermionic correlation functions in lattice QCD simulations.

Declaration of competing interest

The authors declare that they have no known competing financial in-

terests or personal relationships that could have appeared to influence 

the work reported in this paper. If there are other authors, they declare 



Physics Letters B 856 (2024) 138894J. Kim, G. Pederiva and A. Shindler

Fig. 9. Results for the light quark condensates for 10 different training sets, labeled by 𝑖𝑁𝐺,𝑇 , obtained selecting randomly 𝑁𝐺,𝑇 = 50 gauge configurations among the 
full ensemble. The blue band represents the calculation of the light quark condensate on the full set of unlabeled data 𝑁𝑈 .

Fig. 10. Dependence of the quark condensates on the choice of stochastic sources and size of the training set, compared with the direct calculation. The direct 
calculation, shown with the blue band, utilizes the full set of unlabeled data 𝑁𝑈 . The ML mapping calculation utilizes in the training set different single stochastic 
sources, 𝜂(𝑟), 𝑟 = 5, 10, 15, 20, and different numbers of gauge configurations, 𝑁𝐺,𝑇 . The bias correction is calculated with 𝑁𝐺,𝐵 =𝑁𝐺 −𝑁𝐺,𝑇 gauge configurations 
and the same stochastic source used for the training.

Table 2

Selected results comparing different observables predicted and adopted to train the ML mapping. The cor-

responding training, 𝑁𝑇 , bias, 𝑁𝐵 , and unlabeled, 𝑁𝑈 , set are shown together with the computational gain 
(see main text).

Ens. Input Obs. Direct ML 𝑁𝑇 𝑁𝐵 𝑁𝑈 Gain

M1 𝑎3
⟨
𝜓𝜓

⟩|||𝑚𝑠 𝑎3
⟨
𝜓𝜓

⟩|||𝑚𝓁

3.252553(25) 3.252554(24) 50 349 399 × 19 1.31

M3 𝑎3
⟨
𝜓𝜓

⟩|||𝑚𝑠 𝑎3
⟨
𝜓𝜓

⟩|||𝑚𝓁

3.254626(31) 3.254622(26) 50 400 450 × 19 1.39

M1 𝑎3
⟨
𝜒𝜒

⟩|||𝑡=0.5 𝑎3
⟨
𝜒𝜒

⟩|||𝑡=0.7 0.0019974(48) 0.0019970(47) 50 349 399 × 19 1.26

M1 𝑎3
⟨
𝜒𝜒

⟩|||𝑡=0.5 𝑎3
⟨
𝜒𝜒

⟩|||𝑡=1.0 0.0025947(35) 0.0025946(34) 50 349 399 × 19 1.71

M3 𝑎3
⟨
𝜒𝜒

⟩|||𝑡=1.0 𝑎3
⟨
𝜒𝜒

⟩|||𝑡=2.0 0.0011067(37) 0.0011070(33) 50 400 450 × 29 1.80
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Fig. 11. Left plot: Gain obtained as function of the flow time. To train the ML mapping we use the quark condensate at ̄𝑡∕𝑎2 = 0.5 for the ensemble 𝑀1 and 𝑡∕𝑎2 = 1.0
for the ensemble 𝑀3. Right plot: Gain obtained as function of the maximal flow time, 𝑡max∕𝑎2. To train the ML mapping we use the quark condensate at 𝑡∕𝑎2 = 0.5
for the ensemble 𝑀1 and 𝑡∕𝑎2 = 1.0 for the ensemble 𝑀3. We calculate the light quark condensates using ML for all the flow times, from 𝑡∕𝑎2 = 0.5 for the ensemble 
𝑀 and 𝑡∕𝑎2 = 1.0 for the ensemble 𝑀 , at interval of 0.1 up to 𝑡 ∕𝑎2.
1 3 max

Appendix A. Hyperparameters of the model

For the decision tree regression adopted in this work we have used 
the module sklearn.tree in the scikit-learn library. In particular we 
adopt the DecisionTreeRegressor class that allows to create, train, 
and use decision tree models for regression problems. We list here the 
choices of hyperparameters made in this study. The function to measure 
the quality of a split is the mean squared error (MSE), i.e. we minimize 
the minimization the L2 loss using the mean of each terminal node. 
This is equivalent to variance reduction, as feature selection criterion. A 
node will be split if this split induces a decrease of the MSE greater than 
zero. The nodes are expanded until all leaves are pure or until all leaves 
contain less than 1 sample. This means that a split point at any depth 
will only be considered if it leaves at least 1 training samples in each of 
the left and right branches. This may have the effect of smoothing the 
model, especially in regression. When looking for the number of features 
to consider for the best split we consider their total number and permute 
them randomly at each split. We do not include any limit in the number 
of leaf nodes and we do not perform any pruning.
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