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We discuss a machine learning (ML) regression model to reduce the computational cost of disconnected diagrams
in lattice QCD calculations. This method creates a mapping between the results of fermionic loops computed at
different quark masses and flow times. The ML mapping, trained with just a small fraction of the complete data
set, makes use of translational invariance and provides consistent result with comparable uncertainties over the
calculation done over the whole ensemble, resulting in a significant computational gain.

1. Introduction

One of the computational challenges in lattice QCD calculations lies
in the determination of the quark propagator, which not only serves as
the foundation for calculating any fermionic correlation function but
is also required in generating gauge ensembles with dynamical quarks.
Computing the quark propagator involves inverting a very large sparse
matrix representing the lattice Dirac operator. Fermionic disconnected
diagrams appear in most hadron matrix element calculations, as well
as studies of flavor singlet channels, and standard methods for their
calculation are based on stochastic estimates, which are usually com-
putationally expensive.

In this study, we aim to leverage on recent advancements in Ma-
chine Learning (ML) applications to lattice QCD calculations used to
reconstruct the Euclidean time dependence of complex observables by
correlating them with simpler functions [1]. The findings of Ref. [1]
highlighted that ML techniques can effectively map various correla-
tion functions, such as 2- and 3-point functions when utilizing the
same Markov chain. Building upon this observation we extend this ap-
proach to calculate fermion disconnected diagrams. These calculations
involve the manipulation of significant amounts of data, dependent on
the amount of stochastic sources and gauge configurations employed.

Moreover, exploiting the inherent translational invariance of the
lattice theory, we augment our dataset to thoroughly investigate cor-
relations. Utilizing numerous stochastic sources and translational in-
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variance, we establish both training and bias-correction sets, thereby
strengthening the robustness and precision of our analyses.

The gradient flow [2,3] provides a favorable regulator of short-
distance singularities due to its reduced operator mixing, essentially
trading power divergent lattice spacing effects with a milder finite 1/¢
dependence. By keeping the flow time ¢ fixed, one can then perform
the continuum limit with no renormalization ambiguities. An example
of the advantage of the use of the Gradient Flow is the simplified cal-
culation of the quark content of nucleons [4,5] or the resolution of the
problem of power divergences for higher dimensional operators [6]. The
application of the gradient flow to the calculation of fermionic discon-
nected diagrams is beneficial both to simplify the renormalization and
to improve the signal-to-noise ratio.

In Sec. 2 we describe the stochastic method we use to determine
the fermionic disconnected diagrams. In Sec. 3 we study the correlation
between data and, in Sec. 4 we describe the algorithm and present our
results.

2. Fermionic disconnected diagrams

We consider a lattice of spacing a and box size V = L3 x T, with Dirac
fermions in the fundamental representation of SU(N, = 3), ¥, 4. W 4
(a=1,...,N.=3 and a =1,...,4). We adopt periodic boundary con-
ditions for all fields, with the exception that the boundary condition in
Euclidean time is anti-periodic for fermion fields. These boundary con-
ditions preserve translational invariance. In lattice QCD, the calculation
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of physical observables involving fermions, requires the determination
of the quark propagators, [Wa,a(X)Wb, 5( y)]F = S"b (x ¥), where with [-]g
we indicate a fermion contraction. For simple correlatlon functions, like
the kaon or the nucleon 2-point functions, one requires only the calcu-
lation of one column of the inverse, S, of the lattice Dirac operator,
D,

b 1
ﬂ(x y)S cn(y’ Zp) = 4 acoéayoéxzo M

where the source location, z, and the corresponding spin and color in-
dices, y, and ¢, are fixed. Repeated indices, f, b, and y in this case,
are summed over. To determine all-to-all propagators, where the source
location is not fixed, or to calculate quantities related to all-to-all prop-
agators, like the trace of the quark propagator, we have to rely on
stochastic methods.

To calculate the all-to-all propagator one takes asetof r=1,..., N,

of complex random vectors naa) (x) that satisfy

Nlrli_II)l00 <710a(x)7lbﬁ(Y)* >,7 = 5abaotﬁ&xy ’ @

where with (-), we indicate the average over N, stochastic vectors

N'l
(Maa ()" ), = NL 2 nCom (). 3)
1=l

To estimate the all-to-all propagator one can now solve

ﬂ(X J’)d’bp(J’) o ﬂga(x) (€3]

The full propagator is then reconstructed by the unbiased estimator

SepCoy)= Jim {o()pp(»)*), - (5)
r]

up to noise contributions at finite N, . The relative total noise of the esti-

mator is of the order of O(4/12V /N, ,7) and one needs variance reduction
techniques to reach a signal-to-noise ratio of O(1). One example of vari-
ance reduction would be the use of time-dilution [7]. Another choice is
to use the one-end trick [8] and the generalization called linked stochas-
tic sources [9] where the stochastic vector is non-vanishing only for
specific color, spin or space-time indices. We denote linked stochastic
sources with naaﬁ )(x) where the color and Dirac indices b and p are
fixed

18P () = 6 4B plaa(X) - (6)

We now solve for all the fixed couple of values (ay, ag)

D e b ) = — L0 ). @

For different quark flavors, f = ¢,s, one obtains different solutions
¢’ (). To not clutter the notation, we leave the flavor index unspecified
when discussing the generalities of the quark propagator determination.
The quantity of interest is the quark propagator, Szgzg (x, y) that can be
determined for each gauge configuration up to noise contributions by

Vi O 0], = S o) = (850 ™ 00) - @

Reintroducing a flavor index, the quark condensates at vanishing
flow times is denoted by

— a
=3 {ctmrv),,-

where (-)g, denotes the average over the gauge ensemble and the
stochastic sources. CZ (x431,U) is evaluated on a fixed gauge back-
ground, U (x, ), and on a given stochastic source, #7(x)
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f . a f(agag) (ag,ap)
L G, U)=——3§X‘, ¢ OO xSV xoxy) . f=C s,

ag,aq

(10)

The specific choice of the stochastic vector n(x) is not critical as far as
the condition (3) is satisfied and its variance remains within acceptable
limits. For a complex matrix like DZZ(x, y) a standard choice is to use
stochastic vectors belonging to Z,, i.e. for each g, a, x the vector #,,(x)
takes one of the values {+1, +i} with the same probability (see Ref. [10]
and refs. therein for a discussion on the choice of stochastic vectors and
variance reduction techniques).
In this work we also consider the flowed scalar quark condensate

= _a f .
Frar) =5 X (L Gatin, U’>G,n an
X4
where
3
Cy, (x4 tin,U) = % DID I FHCETRIPZAIC T ING) a2
X aa

It is assumed that the fermion fields y(x,t) and y(x,t) satisfy the gra-
dient flow equations of Refs. [2,3], but the results of this work do not
depend on the particular choice of gradient flow equations.

The first step is to solve for each pair (a, a;) the equation

Db, 1) ™ (10,1 = i S (x;1,0), a3)
where the source

00 (x11,0)= a* Y K(u,x:1,0) e (w) a4
u

has to be determined for each value of the flow time 7 solving the adjoint
flow equation

(9, +A) ELVxs1,5)=0, L0110 =50 (x), (15)
to s =0. The kernel K(x,y;t,s), defined in Ref. [3], is the solution of
the gradient flow equation

(at—A)K(x,y;I,s)zo, 0<s<t, (16)

with K(x, y;t,1) = 1/a46Xy for all t > 0. The stochastic vector ni‘f,"a")(x) is
the linked vector adopted in the t = 0 case defined in Eq. (6). The flowed
scalar condensate can then be determined on a single gauge configura-
tion by the expression

f . 4 (apap) (ag,ap) ;s
Cl G timU)== 15 Z Y a ZK(x Vi1, 00" (3.0, 0y 0 ()"

X ag,a
a7
where to compute
¢V n=a" Y K,y 005" (50,0, as)
y
is sufficient to solve the gradient flow equation
(9, = A) $L0% (x5 5,1) = 19

for s =t where the initial condition at s = 0 is given by the solution of
Eq. (13), ¢ (5:0,1).

3. Correlation maps and translation invariance

For our numerical experiment we consider the lattice ensembles sum-
marized in Table 1. They have been generated [11,12] using N = 2+1
dynamical fermion flavors all regulated with a non-perturbative O(a)
clover-improved lattice fermion action and the Iwasaki gauge action.
On these ensembles we have calculated, using stochastic sources as de-
scribed in the previous section, the Euclidean time dependence of the
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Table 1
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Summary of the lattice bare parameters for the ensembles used in this work. N; is the number of gauge
configurations selected from Ref. [11,12]. All the other labels should be self-explanatory.

Label B Ky Ky m,[MeV] my[MeV] a[fm] L/a T/a Cow Ng
M, 1.90 0.13700 0.1364 699.0 789.0 0.0907 32 64 1.715 399
M; 1.90 0.13754 0.1364 409.7 644.0 0.0907 32 64 1.715 450
32625 32625
o x4/a’?=0 . ,-,m
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(a) Euclidean time invariance
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Fig. 1. Graphical representation of the correlation between the light and strange quark scalar condensates at ¢ = 0 for several gauge configurations, Euclidean time
coordinates and stochastic sources on M, ensemble. Left: correlation between light and strange quark scalar condensates for selected values of x,. The data shown
correspond to the training set of N - = 50 gauge configurations and N, = 1 stochastic source. Right: Same as the left plot. The data shown correspond to Ny =50,

a fixed value of x, =T/2 and a selection of stochastic sources.
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Fig. 2. Graphical representation of the correlation between the light and strange quark scalar condensates at ¢ = 0 for a single stochastic source for M, and M,
ensembles, N ; =50 configurations and T'/a = 64 Euclidean time coordinates. These are the sets that have been used to train the ML mapping (see Sec. 4).

unflowed and flowed light and strange scalar condensates. On a fixed
background gauge configurations, they are determined using Egs. (10)
and (17), respectively. We have then analyzed the correlation between
the 2 observables. In Figs. 1-2 we show correlation plots between the
light and strange quark condensates at vanishing flow time, ¢ =0, cal-
culated on M, and M; ensembles. We observe a strong correlation of
the data independently on the Euclidean time where we calculate the
condensate (see Fig. 1(a)). This is a consequence of translational in-
variance and is consistent with the observation that averaging over all
lattice points provides a better statistical precision, making use of the
full lattice. In this context we want to take advantage of translational
invariance to enlarge the data set used to train the ML mappings. A sim-
ilar strong correlation is observed varying the stochastic source used for
the determination of the quark propagator (see Fig. 1(b)). This obser-
vation enables us to use one or more stochastic sources in the training
set, allowing for a relatively small number of gauge configurations for
training. In other words, this approach increases the dimensionality of

the data space that is partitioned into training, bias, and unlabeled sets.
In Fig. 2 we show the correlation plot used to train the ML model on the
ensembles M, and M;, where we have used N = 50 gauge configu-
rations, all the 64 Euclidean time values of x, /a, and N, a=1 stochastic
source. Details on the choice of the training set are discussed in Sec. 4.
From Fig. 2 we note that for ensembles at lighter pion masses a simi-
lar, but slightly weaker, correlation is measured. The weaker correlation
could be caused by a generic loss of correlation for lighter pion ensem-
bles or by a larger mass difference between the correlated observables.
This does not prevent us to successfully test our ML method also for the
ensemble M.

We have observed a similar strong correlation also between con-
densates calculated at different flow times on the same ensembles. The
expected correlation between observables evaluated on the same ensem-
bles in the context of ML modeling could help speed up the calculation
of observables from lattice QCD simulations.
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4. Decision tree mapping of correlations

To take advantage of the correlations observed and described in the
previous section we have scrutinized a few supervised machine learning
methods, and we have found, like it was found in Ref. [1], that a decision
tree (DT) is sufficient to capture the correlation between data. There are
perhaps other maps, like specific neural networks, that might be able to
describe the correlations equally well or even better in certain cases, but
for this first investigation DT is sufficiently accurate.

4.1. Description of the algorithm

Decision Tree (DT) stands as a non-parametric supervised learning
technique employed for regression tasks involving the prediction of con-
tinuous numerical outcomes, by recursively partitioning the input space
into subsets based on feature conditions and assigning a constant value
to each resulting region [13,14]. The primary aim is to build a model
that can predict the value of a target variable by acquiring basic decision
rules deduced from the features of the data.

Based on the observation [1] that DTs can map correlations between
lattice QCD data, we trained a DT to determine fermion disconnected
diagrams at a given quark mass, or flow time, given a fermion discon-
nected diagram calculated at a different quark mass or flow time. We
take a subset of the total amount of data to train a ML model, a DT in this
case, and calculate the corresponding bias, taking advantage of the many
stochastic sources used for the calculation of disconnected diagrams and
translational invariance of the lattice theory. To train the DT we divide
the total set of data N into labeled, N;, and unlabeled data, Ny;. The
labeled data are divided into the subset N to train the machine learn-
ing (ML) model, and the subset N to estimate the bias correction, with
N; = N7+ Np. The data we consider in this numerical experiment are
fermionic disconnected diagrams calculated at 2 different quark masses
or flow times. If we denote with N, the number of stochastic sources,
N the number of gauge configurations, and we make use of trans-
lational invariance, we can use as a complete set of data for a given
condensate N = N, X Ng X T /a points. As labeled data we consider
the subset constituted by Ny = N, ; X Ng X T /a, further divided into
the training set Ny = N, | X Ng 1 X T'/a and the bias correction set
Np=N,; XNgpxT/a, where Ng=Ngr+ Ng p. We have decided
to use the same number of sources for the training and bias set and
utilize the full ensemble for the labeled and unlabeled data. Different
choices are indeed possible and in Secs. 4.3 and 5 we analyze the de-
pendence on the size of the training and bias set. Once the ML model has
been trained, it is applied to the unlabeled data N, = N, ; X Ng XT /a,
where Nyy=WN,=N, ). This implies that, fixed the labeled data, we
have a single DT model for each pair of observables and each ensemble.

Unlike Ref. [1], we partitioned the labeled and unlabeled datasets
based on the selected stochastic sources, utilizing the entire ensemble
for both. Additionally, we leveraged translation invariance and trained
the ML model using features across the entire Euclidean time extent of
the lattice. In alignment with the approach employed in Ref. [1], we
segmented the bias and training sets by stratifying the gauge configura-
tions.

To illustrate, we consider determining an observable O for given val-
ues of external parameters such as the quark mass m or the flow time ¢.
The DT is trained using features comprising the same observable, O,
at different values of the quark mass or flow time. These features are
evaluated on a subset of the total dataset, referred to as the training
set. The mapping obtained through this training between the two ob-
servables is denoted as I';, where the subscript f indicates that the
mapping depends on the choice of the external parameters. In Sec. 4.3,
we demonstrate that this mapping is independent of the choice and size
of the training set. After the training, the target quantity O (U, #, x,) is
obtained by applying the ML mapping to the features on the unlabeled
data, i.e.

Physics Letters B 856 (2024) 138894

Or(U.n.x) =T [0, (U.n.xy)]. (20)

The dependence of O on the external parameters m, and ¢ is left im-
plicit. We keep explicit the dependence on the variables U, #, x, labeling
the data set. The ML mapping Iy does not depend explicitly on the train-
ing data, but it is evaluated on features that depend on the specific gauge
configuration, stochastic source, and Euclidean time and thus so is the
output observable.

The correlation function is then obtained averaging on the unlabeled
data

1 1
— Or(U,ny,x4), 21
Ng ; N,u WZU: nelu

where with ), we indicate a sum of the gauge configurations and Y,
indicates the sum over all the sources belonging to the unlabeled data.
In Sec. 4.2 we discuss the results including a bias correction.

The first example we consider is O = C;/_'W (x431,U), i.e. the strange

scalar quark condensate, and O = cL (x43n,U), i.e. the light scalar

quark condensate. Both are defined in Eq. (10). The second example
we consider is O = C%X(x4,f;;1, U) i.e. the light quark scalar conden-
sate at flow time 7, and O = CL (x4,t;n,U), i.e. the same condensate at
a different flow time ¢. This quantity is defined in Eq. (17).

The DT mapping, I', is determined on the training set minimizing a
loss function given by the mean squared error, and for each node, the
algorithm considers all the input data and chooses the best split; nodes
are expanded until all leaves contain a single sample. A brief discussion
and the summary of the other hyperparameters of the model is found in
Appendix A.

The mapping is then applied to the unlabeled data of the input
quantity for each N, ; = N, — N, ; stochastic source, each gauge con-
figuration, and each x, /a. To avoid autocorrelation in the training pro-
cedure, we have chosen the set of N r = 50 gauge configurations, each
maximally separated in the Markov chain. Specifically, we select gauge
configurations separated by 40 and 45 molecular dynamics trajectories
for the two ensembles. When applying the ML mapping to the unlabeled
data, we first average over the stochastic sources, then build blocks of
7 elements for the ensemble M, and 9 elements for the ensemble M;.
Subsequently, a standard bootstrap procedure is applied with N, = 1000
bootstrap samples. This allows for the calculation of the statistical error
of the resulting condensate.

We have studied the dependence of the signal-to-noise ratio (SNR)
of the scalar condensate on the number of stochastic sources, N,,, for
t/a®> =0 and t/a® = 0.5, 0.7 as representative positive flow times, and
the full set of gauge configurations available in the ensembles labeled
M, and M; (see Table 1 in the next section).

We did not attempt to optimize the number of sources and chose
N, =20 for all our calculations. '

Even though this might not be the optimal choice, it is sufficient to
test the ML algorithm we propose in this work. It is worth noting that
our numerical experiments indicate that a different number of stochastic
sources would be needed to saturate the SNR for ¢ > 0, as a result of the
smoothing effect of the gradient flow.

For the training we use N, ; =1 stochastic source and Ng =50
gauge configurations. This gives us, for both ensembles, a total of Ny =
3200 data points to train the ML model.

In Fig. 3, we present the distributions of three condensates, compar-
ing the results obtained from the direct calculation of the condensates
with those derived from the ML mapping. This comparison illustrates
how the ML approach can replicate the result obtained with a direct
calculation capturing the essential features of the distribution of the
condensates. For a more quantitative analysis, we present averages and

! For the analysis at flow time #/a®> = 1.0 for ensemble M;, we used a total of
N, =30 stochastic sources (see Table 2).
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Fig. 3. Distributions on the unlabeled data of quark condensates at x, = 7'/2 from a direct calculation and from the ML mapping.
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Fig. 4. Comparison of the light quark condensate on the ensemble M, between the ML result and the direct (standard) calculation of the same condensate as a

function of Euclidean time. The comparison is performed on the unlabeled data.

statistical errors in the next section, including bias corrections for fur-
ther accuracy.

4.2. Results

The results obtained with the ML mapping, cfr. Eq. (21), have been
corrected for possible biases. To estimate the bias correction we use the
same stochastic sources chosen for the training set, #; , and the remain-
ing Ng p = Ng — N7 gauge configurations. The bias-corrected result

is given by
1 1
Ng ; Ny,u

1
Ng.p

(OF>GJ, (m,t,x4) = ZOF(UJ?U,XU*‘
ny

+ = Y = D [0 %)~ O WUy )]
Ug ~nL yp

(22)

where the bias correction is evaluated on the bias set. The calculation
of the bias presented in this section is an extension of the calculation of
Ref. [1], where we include the possibility of choosing different stochas-
tic sources where the fermionic disconnected diagram is evaluated.

We have determined the light quark condensate at ¢ = O training
the ML mapping as described in the previous section using the strange
quark condensate as features, and then calculated the bias corrections
as described above. We have also used a ML mapping to determine the
flowed scalar quark condensate on a set of flow times. The features used
to train the ML mapping are the light quark condensate at 7/a> = 0.5 for
the ensemble M, and 7/a® = 1.0 for the ensemble M.

Results after the training are shown in Figs. 4-6, where the ML re-
sults (orange data) are compared with a standard determination of the

same condensates on the unlabeled data (blue data). With this choice
both the standard and the ML determinations use a common set of data
simplifying the comparison of statistical errors. Figs. 4 and 6 show the
results for the light quark condensate at ¢/a = 0 for the 2 ensembles
M, and M;. The ML mappings are obtained using the strange quark
condensate on the same ensembles. Fig. 5 shows the result for the light
quark condensate at t/a> = 0.7 obtained with a ML mapping trained
with features given by the same condensate at 7/a®> =0.5.

For these 3 cases, in the left plots we show the comparison between
the ML and the direct determinations before any bias correction is ap-
plied, while the middle plots are obtained after bias correction. The right
plots show the deviation between the direct and the ML calculation with
bias correction, normalized by the total standard deviation.

_ (0) (x4) = (Or) (x4) 4

2 2
,/JOF+0'0

The statistical errors are calculated as follows. First, we apply the ML
mapping to the unlabeled data, after averaging over the stochastic
sources, then we build blocks of 10 elements and a standard bootstrap
procedure is performed with Ny, = 1000 bootstrap samples. In this
way, we determine the error bars of both the condensate for each x,/a,
and the average over Euclidean time.

Comparing the plots before and after bias corrections we note that
for both analysis for the ensemble M the bias correction does not have
any impact, because the ML prediction and the direct determination
already agree perfectly before applying the bias correction. In the case
of the ensemble M5 in Fig. 6 we observe a slight bias of order of 1 ¢
that is corrected after applying a bias correction. In order to properly
understand the dependence of the bias on the parameters of the data

5 23)
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would require a much larger numerical study beyond the scope of this
work. Comparing the difference of the strange and light quark masses
in the ensemble M| and Mj; (cfr. Table 1) seems to suggest that at fixed
labeled sets the larger mass difference in the ensemble M; implies a
larger bias.

To complement this observation, we have examined the impact of
the training set size on the ML predictions prior to bias corrections, and
the results are shown in Fig. 7. In Figs. 7(a) and 7(b), showing the results
for the ensemble M/, we observe that increasing the size of the training
set for N r > 50 provides no advantage consistently with the fact that
for N r = 50 we observe no bias. For the ensemble M3, with the results
shown in Fig. 7(c), we observe a slight improvement increasing the size

of the training set, but already for N 1 = 100 we observe no significant
deviation between the direct and ML calculation. This analysis confirms
that the bias correction is necessary only for the ensemble M;. Given
the cost-effectiveness of the training process, while it is computationally
efficient to increase the size of the training set for the ensemble M; to
remove bias, we opted for a more conservative approach by calculating
the bias in all ML determinations.

Using the trained DT we have computed the light quark conden-
sate as a function of flow time across the entire range 0 <t/ a* <2 for
the ensembles M| and Mj;. The features employed to train the ML map-
ping consist of the light quark condensate at 7/a> = 0.5 for the ensemble
M, and 7/a®> = 1.0 for the ensemble M. In Fig. 8, we present the ML
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results showing the light quark condensate as a function of flow time
t/a?. To validate our result we show the results of a direct calculation
att/a?>=0.7, 1.0 for the ensemble M, and at 7/a® = 2.0 for the ensem-
ble M;. For comparison we also show results obtained at #/a> = 1.0 for
the ensemble M;. The only calculation of the same quantity available
in the literature is the result obtained in Ref. [3] with a direct calcu-
lation of the disconnected diagrams for larger values of the flow time.
While our calculation does not cover the same range of flow times it
gives us a qualitative comparison. The increase at small flow time for
our data is easily explained. The small flow time region covered by the
ML calculation shows the power divergent contribution proportional to
m/t and possibly other power divergent contributions vanishing in the
continuum limit. In the chiral and continuum limit Ward identities con-
nect the flowed condensate with the physical condensate [3,15], and
the power divergence in 1/¢ vanishes. In Fig. 8 we observe, at short flow
time, the 1/7 contribution that is suppressed at lower quark masses. For
larger flow times and smaller quark masses, as described in Ref. [3], the
1/t contribution is small and the remaining logarithmic contribution is
canceled by the contribution of the vacuum-to-pion pseudoscalar matrix
element evaluated at the same flow time.

4.3. Robustness of the ML mapping

To test the robustness of the DT we trained we have varied specific
hyperparameters, like the number and the choice of gauge configura-
tions and stochastic sources used for the training. We have studied the
dependence on the choice of the training set considering different, ran-
domly chosen, sets of N =50 gauge configurations and different
choices for the stochastic source.

In Fig. 9 we show the ML calculation for 10 different random choices
of the N = 50 gauge configurations used for the training, and com-
pare it with the full direct calculation of the complete set, Ny, of
unlabeled data. We hardly observe any deviation between all the cal-
culations. In Fig. 10 we show the dependence of the ML calculations on
the choice of the stochastic source and on the number of gauge configu-
rations, N, 7, used for the training. We observe no significant deviation
when we choose a different stochastic source or when we vary the size
of the training set. We conclude that changing the training set or its
size results in little to no deviation between the different ML mappings
obtained and the direct standard calculation.

Physics Letters B 856 (2024) 138894
5. Conclusions

We have investigated an application of supervised Machine Learning
(ML) techniques for lattice QCD calculations. Fermionic disconnected
diagrams are among the most expensive quantities to calculate in any
lattice QCD computation. We have trained a ML mapping to speed up
the calculation of fermionic disconnected diagrams for a set of external
parameters such as the quark mass and the flow time. The mapping is a
decision tree trained with a subset of the full set of data usually analyzed
for a standard lattice QCD calculation. After applying bias correction,
we find that the condensates calculated with ML deviate at most by 1
sigma over the whole set of parameters investigated, while maintaining
consistent statistical uncertainties.

The computational gain depends on whether the ML mapping is
trained using 2 different quark masses or 2 different flow times. In the
first case, given the time needed for a standard lattice QCD calculation
of the light condensate on Ny; data, the gain applying a ML mapping is
given by

t N
Gain= (2N L 2L 24)
t¢ Ny Ny

where 7, ; label the time needed to calculate the down, or strange, con-
densate for a single stochastic source and single gauge configuration.
We have estimated the timings for the calculation of the quark propa-
gators, and conclude that the ML calculation requires 72 — 76% of the
time needed for a standard computation. The gain depends almost solely
on the difference in computer time needed for the calculation of the 2
quark propagators used in the ML method. We have compiled the gains
achieved in the two ensembles we have analyzed in Table 2. The gains
are expected to increase further for lighter pion ensembles, owing to the
larger difference between the strange and quark masses. However, it re-
mains to be investigated whether there is sufficient data correlation to
effectively apply this ML method in such cases.

In the case of different flow times the gain depends on the number
of flow times N, where the condensate is determined and on the differ-
ent flow times used in the training procedure. In the case we use the
ML mapping to compute the chiral condensate at a single flow time, in
Table 2 we have collected the gains achieved in three different cases.
The gains are also shown in the left plot of Fig. 11 as a function of the
flow time t/a” of the calculated condensate. For this plot the features
are given by the light quark condensate at flow time 7/a> = 0.5 for the
ensemble M, and 7/a*> = 1.0 for the ensemble M;. We observe an al-
most linear gain as a function of the difference between the input and
output flow time up to a factor 3 for the ensemble M, at flow time
t/a* =2.0 and a factor 1.8 for the ensemble M;. We do not show any
data for f < f because there is no gain in trying to apply ML to compute
the condensate for flow times smaller than the input feature.

If we train the ML mapping using the same features (f/a> = 0.5 for
the ensemble M, and 7/a®> = 1.0 for the ensemble M;) for many flow
times 7 > 7 we obtain a larger gain. In the right plot of Fig. 11 we show
the gain if we train the ML for flow times at intervals of 0.1 for 7 > 7 as
a function of the maximal flow times utilized, #,,,/a>. In this case we
obtain gains of a factor 10 for M3 and 12 for M.

Machine Learning methods can provide powerful computational
tools to make better use of the plethora of data produced in standard
lattice QCD calculations. In this work we have successfully applied
a supervised ML method to speed up the calculation of disconnected
fermionic diagrams. We consider this work as a first attempt into the
exploration of novel paths for the determination of the quark propaga-
tor and fermionic correlation functions in lattice QCD simulations.
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Table 2

Selected results comparing different observables predicted and adopted to train the ML mapping. The cor-
responding training, N, bias, N, and unlabeled, N, set are shown together with the computational gain

(see main text).

Ens.  Input Obs. Direct ML Ny Ng Ny Gain
M, & <W‘”>|m\ @ (yy) ” 3.252553(25)  3.252554(24) 50 349 399x19 131
M; & <W“’>|m\ @ (yy) n 3.254626(31)  3.254622(26) 50 400 450x19  1.39
M, a (7;()|,:0_5 a (7;(>|l:0‘7 0.0019974(48) ~ 0.0019970(47) 50 349  399x19  1.26
M, @ (71)|/:0_5 @ (7x) o 0.0025947(35)  0.0025946(34) 50 349  399x19 1.71
M, @ (71)|,=m @ {7rx) ,, 00011067(37)  0.0011070(33) 50 400  450x29  1.80

that they have no known competing financial interests or personal re-
lationships that could have appeared to influence the work reported in
this paper.

Data availability

Data will be made available on request.
Acknowledgements

We thank Tom Luu for constant encouragement and a critical reading
of the manuscript. We have profited from discussions with A. Baza-
vov. We acknowledge the Center for Scientific Computing, University

of Frankfurt for making their High Performance Computing facilities
available. The authors also gratefully acknowledge the computing time

granted by the JARA Vergabegremium and provided on the JARA
Partition part of the supercomputer JURECA [16] at Forschungszen-
trum Jiilich. J.K. was supported by the Deutsche Forschungsgemein-
schaft (DFG, German Research Foundation) through the funds pro-
vided to the Sino-German Collaborative Research Center TRR110
“Symmetries and the Emergence of Structure in QCD” (DFG Project-
ID 196253076 - TRR 110). A.S. acknowledges funding support from
Deutsche Forschungsgemeinschaft (DFG, German Research Foundation)
through grant 513989149 and under the National Science Founda-
tion grant PHY- 2209185. G.P. is funded by the Deutsche Forschungs-
gemeinschaft (DFG, German Research Foundation) - project number
460248186 (PUNCH4NFDI). We acknowledge support from the DOE
Topical Collaboration “Nuclear Theory for New Physics”, award No.
DE-SC0023663.



J. Kim, G. Pederiva and A. Shindler

. M .

3.0 Ms .

.

254 .
£ .
©
O 2.0 .

.
154 *
.
.
1.0
0.6 0.8 1.0 12 1.4 16 18 2.0
t/a?

Physics Letters B 856 (2024) 138894

Gain

0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
2
tmax/a

Fig. 11. Left plot: Gain obtained as function of the flow time. To train the ML mapping we use the quark condensate at 7/a® = 0.5 for the ensemble M, and f/a’> = 1.0
for the ensemble M. Right plot: Gain obtained as function of the maximal flow time, 7,,,,/a*. To train the ML mapping we use the quark condensate at /a*> = 0.5
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M, and t/a* = 1.0 for the ensemble My, at interval of 0.1 up to 1, /a>.
Appendix A. Hyperparameters of the model

For the decision tree regression adopted in this work we have used
the module sklearn.tree in the scikit-learn library. In particular we
adopt the DecisionTreeRegressor class that allows to create, train,
and use decision tree models for regression problems. We list here the
choices of hyperparameters made in this study. The function to measure
the quality of a split is the mean squared error (MSE), i.e. we minimize
the minimization the L2 loss using the mean of each terminal node.
This is equivalent to variance reduction, as feature selection criterion. A
node will be split if this split induces a decrease of the MSE greater than
zero. The nodes are expanded until all leaves are pure or until all leaves
contain less than 1 sample. This means that a split point at any depth
will only be considered if it leaves at least 1 training samples in each of
the left and right branches. This may have the effect of smoothing the
model, especially in regression. When looking for the number of features
to consider for the best split we consider their total number and permute
them randomly at each split. We do not include any limit in the number
of leaf nodes and we do not perform any pruning.
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