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Abstract

Identifying the neural correlates of consciousness (NCCs) is key to support the

different scientific theories of consciousness. NCCs can be defined to reflect either

the brain signatures underlying specific conscious content or those supporting

different states of consciousness, two aspects traditionally studied separately. In this

paper, we introduce a framework to characterize NCCs according to their dynamics

in both the 'state' and 'content' dimensions. The two-dimensional space is defined by

the NCCs' capacity to distinguish the conscious states from non-conscious states,

(x-axis) and the content (perceived versus unperceived, y-axis). According to the

sign of the x and y-axis, NCCs are separated into four quadrants in terms of how

they distinguish the state and content dimensions. We implement the framework

using three types of EEG NCCs: markers of connectivity, markers of complexity, and

spectral summaries. The NCC-state is represented by the level of consciousness in

1) patients with disorders of consciousness; 2) healthy participants’ during a nap. On

the other hand NCC-content by the conscious content in healthy participants'

perception tasks: 1) auditory local-global paradigm and 2) visual awareness

paradigm. In both cases, we see separate clusters of NCCs with correlated and

anti-correlated dynamics, shedding light on the complex relationship between the

state and content of consciousness and emphasizing the importance of considering

them simultaneously. This work presents an innovative framework for studying

consciousness by examining NCC in a two-dimensional space, providing a valuable

resource for future research, with potential applications using diverse experimental

paradigms, neural recording techniques, and modeling investigations.
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Introduction

Giving a definition of consciousness with a coherent theoretical framework is a

daunting task that would benefit from simple conceptual dissociations to improve

interpretability. Identifying the neural correlates of consciousness (NCC) has become

crucial to allow progress in the science of consciousness. Following the Koch & Crick

seminal definition, neural correlates of consciousness are the minimal neural

processes that must occur in the brain for a particular conscious experience to occur

(Crick & Koch, 1990), however, this definition leaves the possibility of two types of

NCC, those of conscious contents and those of states of consciousness.

Traditionally, research on consciousness has developed separately in these two

pillars. While some researchers, mainly cognitive neuroscientists, primarily focused

on the neuronal processes behind conscious access of specific content (e.g. the

capacity to report stimuli as seen versus not seen, or to discriminate which stimuli).

The second line of researchers focused on global states of consciousness (e.g.

sleep, anesthesia, and disorders of consciousness) (Bayne et al., 2016; Boly et al.,

2013; Sanders et al., 2012; Goupil and Bekinschtein; 2012). This research has been

rather developed by physicians with questions of diagnosis and prognosis often

sanctioned by ethical and end-of-life questions.
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Neural correlates of conscious content (NCC-C) are a reflection of the neural

processes that occur for a specific experience. NCC-C are normally studied by

comparing conditions where specific conscious content (e.g. perception of sound or

image) is present or absent while stimulus properties - and state of consciousness -

remain unchanged. The difference between the neural activities averaged by trials

depending on the capacity to report (reported perceived, eg. "seen"), compared to

the lack of capacity to report (reported not perceived, eg. "not-seen") is generally

considered to be a neural correlate of consciousness of content. Several different

paradigms exist such as perceptual suppression, masking, or threshold paradigms in

different sensory modalities (Del Cul et al., 2007, Dehaene & Changeux, 2011; Kim &

Blake, 2005). In addition, there are tasks that assess the capacity to attend and

integrate perceptual and cognitive irregularities such as the auditory local-global

paradigm (Bekinschtein et al., 2009). Various methods such as EEG, MEG, or fMRI

allow for studying the neural correlates of these conscious perceptual experiences

(Koch et al., 2016; Tsuchiya et al., 2015). From these studies, the NCC-C which

differentiates the “seen” from the “not-seen” range from the primary and secondary

networks of early perceptual and cognitive integration to abstract cognitive

implementation associative areas (Dehaene & Changeux, 2011).

Electrophysiological studies on monkeys and humans have revealed several

signatures of auditory awareness like P3b event related potentials and oscillations in

α / β (9-30 Hz) and γ (> 40 Hz) bands between the visual cortex and frontoparietal

cortices (Dehaene & Changeux, 2011). The auditory local-global paradigm was

designed to specifically capture EEG potentials that are directly linked to the

conscious processing of hierarchical regularities (Bekinschtein et al., 2009).
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Neuronal Correlates of Conscious State (NCC-S) are used to differentiate states of

consciousness. These include conditions as diverse as sleep, partial complex

seizures, general anesthesia, and patients in a vegetative state or in a minimal

consciousness state (Laureys et al., 2004). NCC-S can signal the emergence of

consciousness, with the brain having to be at an appropriate level of processing to

"ensure adequate cortical excitability" for the emergence of consciousness (Koch et

al., 2016). Consciousness disorders in patients with brain injury are a good model of

different states of consciousness as they provide a spectrum of conscious states.

The current taxonomy to describe these patients is based on neurological evaluation

(CRS-R, Coma Recovery Scale-Revised (Kalmar & Giacino, 2005)). This evaluation

classifies these patients in different clinical conditions: the vegetative state patient

(VS) - otherwise called unresponsive wakefulness syndrome (UWS) (Laureys et al.,

2010), characterized by a behavioral examination of eyes open without awareness

(Jennett & Plum, 1972). The second clinical condition is the minimally conscious

state (MCS) (more recently proposed to be renamed as cortically mediated state

(CMS) (Naccache 2018)), with patients showing reproducible behavioral responses

suggesting environmental awareness such as slow visual pursuit or response to

simple commands; and finally, the exit-MCS (EMCS) patient, able to maintain some

degree of basic communication (Giacino et al., 2002). These three clinical categories

can be considered 'ordered' in a gradient reflecting the richness of conscious

experience (Bayne et al., 2016). These theoretical and behavioral findings are also

verified - and in many cases enriched (Naccache, 2018) - by NCC-S. For example,

different electrophysiological markers derived from EEG recording in a resting state

(Sitt et al., 2014; Chennu et al., 2014) are able to discriminate VS/UWS patients from

MCS patients. In the same way, fMRI during a resting state period (Demertzi et al.,
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2014, 2015, 2019; Di Perri et al., 2016), PET with metabolic markers (Stender et al.,

2014, Hermann et al., 2021) or the calculation of an index reflecting the EEG

reaction after stimulation by TMS (Casarotto et al., 2016), are capable of

discriminating between VS/UWS and MCS patients. This contrast makes it possible

to study the VS/UWS as a state of wakefulness without awareness, and the MCS as

a state with minimal behaviors consistent with awareness of the environment or the

self. Sleep provides an additional valuable model of different and reversible states of

consciousness, with the advantage of the possibility to record NCC-S of healthy

participants. Indeed, there are clear EEG markers (Iber et al., 2007; Imperatori et al.,

2021; Comsa et a., 2019) and fMRI activity patterns characterizing brain activity in

wakefulness and during different sleep stages (Dang-Vu et al., 2010; Peigneux 2015;

Song and Tagliazucchi 2021​​). Additional models of interest include anesthesia

(Lewis et al., 2012; Barttfeld et al., 2015; Chennu et al., 2016; Zelmann et al., 2023)

or complex seizures (Guo et al., 2016; Blumenfeld 2021).

All these results demonstrate a rich literature studying particular brain activity

features as putative NCC-S or NCC-C. However, not much is known when it comes

to comparing those given features in both NCC dimensions simultaneously; do the

different NCC reflect identical or different neuronal processes relevant to both state

and content of consciousness, or, alternatively, are they specific to only one of those

dimensions?

In this work, we propose a two-dimensional space framework that allows the contrast

of brain features in both NCC dimensions simultaneously, and to characterize

different types of NCC according to where they fall in the two-dimensional space. We

also provide two experimental examples: a comparison of states of consciousness
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(disorders of consciousness or sleep) and of types of conscious content (auditory or

visual).

Methods

Population

Patients

We included 443 patients (177 women; age = 47 ± 19) recorded between 2008 and

2019 in the neuro-intensive care at Pitié Salpetrière for an expert assessment of their

consciousness. During this evaluation, we performed several exams (clinical

assessment, MRI, EEG, ERP, PET) to determine more accurately the state of

consciousness. The Ethical Committee of the Pitie-Salpetriere approved this

research under the French label of ‘routine care research’ (Comité de Protection des

Personnes n◦ 2013-A01385-40 Ile de France, Paris, France, under the code

‘Recherche en soins courants’).

Healthy subjects

Experiments were approved by the Ethical Committee of the Pitie Salpetriere

Hospital, NeuroDoc protocol. We recorded 36 subjects (29 women; age = 25.3 ± 3.8

mean ± standard deviation) for the local-global paradigm, and 35 subjects (28

women; age = 24.9 ± 4.1 mean ± standard deviation) for the visual awareness

paradigm. For the nap experiment, twenty-six participants (19 women; age = 24.3 ±

4.9 years mean ± standard deviation) were recruited to the study and gave written

informed consent to procedures approved by the University of Cambridge Research

Ethics Committee, in accordance with the Declaration of Helsinki.

7



Paradigms

Experiment 1: Local-global paradigm

The local-global paradigm, developed by Bekinschtein et al., is reported in

Bekinschtein et al. (2009). This is an oddball paradigm based on the repetition of two

sequences of tones: XXXXX or XXXXY. In a low-level (local regularity), XXXXX is the

local standard and XXXXY is the local deviant. The contrast between these two

sequences reveals the occurrence of the Mismatch Negativity (MMN). This response

is in a short range and is also reproduced during the loss of consciousness

associated with sleep, general anesthesia, or vegetative state. In a high level (global

regularities), the repetition of the XXXXY or XXXXX is the standard condition and

establishes the rule. The violation of this regularity by the other sequence: XXXXX or

XXXXY respectively, is represented by the P3b waveform and requires conscious

awareness and working memory. Local and global regularities are manipulated

orthogonally 2*2: The first type of blocks consists of local standard-global standard

(XXXXX) and local deviant-global deviant (XXXXY) sounds. The second type of

blocks is made up of local deviant-global standard (XXXXY) and local

standard-global deviant (XXXXX) sounds.

Experiment 2: Visual awareness paradigm

Near-threshold visual awareness was assessed using a visual backward masking

paradigm modified from Del Cul et al. (Del Cul et al., 2007). In this paradigm, a

para-foveal numerical target (‘2’, ‘3’, ‘7’ or ‘8’, height = 1.7 cm, width = 1.1 cm) was

presented for 16 ms either to the right or to the left of a central fixation point (8°

visual angle) on a 60 Hz frame-rate screen. The numerical target was followed after
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a variable Stimulus Onset Asynchrony (SOA, to 16 ms at 83 ms) by a visual mask,

consisting of letters surrounding the target, presented for 250 ms. 800 ms after the

target presentation, participants were asked to perform a subjective task of visibility

rating of the target through a binary ‘seen’ / ‘unseen’ answer. Answers were collected

via key press with a pseudo-randomization of response hand order and switch of

response hand in the middle of the task. The entire task consisted of the

presentation of 400 trials (64 trials per SOA and 80 catch trials in which only a mask

was presented, without a target).

Experiment 3: Nap

Participants arrived at the EEG lab either at 8:00 or at 13:00 and were

accommodated in a bed and instructed that they have a 2-hours window during

which they could fall asleep. They were informed that, while asleep, they might be

presented with tones via the headphones and that, if they noticed them, they could

ignore them and continue sleeping. The EEG signal was constantly monitored for

markers of sleep. After having assessed stable non-rapid eye movement (NREM)

sleep for at least three minutes, auditory stimulation including pure tones (500 Hz to

5302 Hz, 100ms, ISI = 500ms) was started. Tones were played with a slow fading-in

to minimize the likelihood that participants would be awakened by the onset of the

stimuli. Importantly, to minimize exposure to stimulation during arousals, whenever

arousal occurred stimulation was promptly stopped. Stimulation would then be

resumed only after a stable NREM sleep had been reassessed. For the goal of this

study, we used sections of the recording during which no sounds were presented.
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EEG processing data

Experiment 1: Local-global paradigm

The EEG data was recorded at a sampling frequency of 250 Hz with a 256-electrode

geodesic sensor net (Electrical Geodesics Inc system) referenced to the vertex. Trials

were band-pass filtered (0.5-45 Hz) and then segmented in epochs ranging from

−200 ms to +1344 ms from the first sound onset. Electrodes with voltages exceeding

100µV in more than 50% of the epochs were removed. Moreover, voltage variance

was computed across all correct electrodes. Electrodes with a voltage variance

Z-score higher than four were removed. This process was repeated four times. Bad

electrodes were interpolated using a spline method (Perrin et al., 1989). Epochs

were labeled as bad and discarded when voltage exceeded 100µV in more than 10%

of electrodes. Moreover, voltage variance was computed across all correct epochs,

and epochs with a Z-score larger than 4 were removed. This process was also

repeated four times. The remaining stimulus-locked epochs were averaged and

digitally transformed to an average reference. A 200 ms baseline correction (before

the fifth sound onset) was applied. Pre-processing was implemented using the

MNE-Python package.

Experiment 2: Visual awareness paradigm

High-density scalp EEG was acquired using 256 electrodes Hydrocel Geodesic

Sensor Net on a Net300 Amplifier (Electrical Geodesics Inc system) with a sampling

frequency of 250 Hz during the behavioral task. Impedances were set to below 75

kΩ prior to the start of each recording. EEG was preprocessed using a fully

automatic procedure (same preprocessing as for the local-global paradigm). The
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only change is that the epochs are segmented between -300 ms to 800 ms

according to the onset of the target.

In order to get rid of the confound of evoked responses to the mask, we proceeded

to a mask subtraction procedure as in the Del Cul et al. study (Del Cul et al., 2007).

We first realigned all epochs to the mask onset and computed the evoked response

to the mask from the catch trials. We then subtracted this evoked response from all

other trials. Finally, we realigned epochs on the target to obtain epochs stripped from

the mask response (this procedure resulted in shortening the epochs which as a

result went from -232 ms to 732 ms after target onset).

Experiment 3: Nap

The EEG signal was recorded with 128-channel sensors using a GES 300 Electrical

Geodesic amplifier, at a sampling rate of 500 Hz (Electrical Geodesics Inc

system/Philip Neuro). Conductive gel was applied to each electrode to ensure that

the impedance between the scalp and electrodes was kept below 70 kΩ. The EEG

recordings were then preprocessed using the same fully automatic procedure as for

the local-global and visual awareness paradigms.

Two independent experienced sleep examiners blind to stimuli onset/offset times

scored offline 30 s-long windows of EEG data according to established guidelines

(Iber et al., 2007). The two scoring lists were subsequently compared and

controversial epochs were inspected again and discussed until an agreement was

reached. EEG and EOG signals were first re-referenced to mastoids and then EEG

signals were bandpass filtered between 0.1 and 45Hz, EOG between 0.2 and 5Hz.

EMG signals were obtained from local derivation and were high-pass filtered above
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20 Hz. Then, based on the sleep scoring, periods of wakefulness (319.4 ± 33.5 sec)

and NREM stage 2 sleep (369.8 ± 93.6 sec) when no auditory stimulation was

presented were selected.

Two NCC dimensions according to the local-global paradigm and visual

awareness paradigm

A set of previously proposed putative NCC (Engemann et al., 2018; Sitt et al., 2014)

were computed in state of consciousness contrasts (NCC-S) and conscious content

contrast (NCC-C). Importantly the algorithms and parameters used to compute the

proposed markers were identical in both cases.

For the NCC-S, analyses were performed on the local-global EEG recording in the

group of patients and a nap session in healthy participants. In the local-global

dataset, analyses were carried out from -100 ms before the onset of the first sound

to the onset of the fifth sound (+600 ms). All trials are selected independently of

standard or deviant status. This was combined with the nap EEG data which was

split into epochs of 800 ms, separately for the periods of NREM stage 2 sleep or

wakefulness. The epoching was done using a random jitter, between two epochs,

from 550 ms to 850 ms.

In this range, three types of markers were computed: 1) Markers of connectivity:

wSMI in the theta band. 2) Markers of complexity: Kolmogorov-Chaitin complexity

and permutation entropy. 3) Markers of frequency power: alpha power, beta power,

delta power, gamma power, theta power. The result is expressed with AUC

corresponding to the estimation of the classifier's ability to discriminate between

MCS and VS/UWS patients or between wakefulness and N2 sleep.
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For the NCC-C, the local-global EEG recording was used in healthy subjects from

+600ms (onset of the fifth sound) and +1300ms. The EEG was also recorded during

the visual awareness paradigm in the healthy subject, the window of interest is

between the presentation of the numerical target (0ms) and +700ms. The same

markers used as NCC-S were calculated but contrasted between deviant/standard

trials or seen/not-seen trials. The result is expressed with AUC corresponding to the

estimation of the classifier's ability to discriminate GD and GS trials, LD and LS trials,

or seen/not-seen trials.

Statistics

AUC

The area under the curve (AUC) is calculated from the receiver operating

characteristic (ROC) curve. The ROC curve is a graph representing the performance

of a classification model for all classification thresholds. It is plotted from the rate of

true positives (sensitivity) versus the rate of false positives (1-specificity). It is then

possible to calculate the area under this curve, or AUC, using a sorting algorithm.

The AUC provides an aggregate measure of performance for all possible

classification thresholds. The AUC can be interpreted as a measure of the probability

that the EEG marker used will correctly classify trials or conditions (here, UWS/MCS

patients, wake/N2 sleep in healthy participants, GD/GS, LD/LS; or seen/unseen

trials). An AUC value close to 1 shows that the marker is higher in the A condition

than in the B condition, close to 0.5 the classifier is at random, and an AUC value

close to 0 shows that the marker is higher in the B condition than the A condition. For

the paired conditions (seen/unseen; GD/GS; LD/LS; wake/N2 sleep), the

distributions of the markers per epoch were z-scored, and the trimmed means were
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calculated (excluding the bottom and top 10 % of the distributions). This results in

one value per subject per condition per marker. The AUC values were calculated on

these group-level distributions. For the UWS/MCS recordings, the same analysis

was done with the exception of z-scoring. We report significant AUC for the content

or the state if the AUC values of the two distributions are significantly different with a

Wilcoxon two-sided test, Bonferroni corrected - for the paired conditions and a

Mann-Whitney U test, Bonferroni corrected - for the unpaired condition (UWS/MCS).

Computation of markers

Normalized power spectral analysis

Spectral analysis is a well-established method for the analysis of EEG signals. We

estimated power in five frequency bands (delta to gamma: Delta (δ: 1-4 Hz), Theta

(θ: 4-8 Hz), Alpha (α: 8-13 Hz), Beta (β: 13-30 Hz) and Gamma (γ: 30-45 Hz)).

Mathematically, the power spectral density is estimated by the Welsh method

(Welch, 1967). The power in a given band is calculated as the integral of the spectral

power density then it is linearized using a logarithmic scale. The normalized power is

calculated by dividing the power in each band by the total energy in the trial. It is

expressed in dB and therefore represents a percentage of power. The abbreviations

used in the text for the normalized power bands are the following: Delta normalized

|δ|, Theta normalized |θ|, Alpha normalized |𝛼|, Beta normalized |β|, Gamma

normalized |𝛾|.

Markers of complexity

Permutation entropy (PE) was developed by Bandt & Pompe (Bandt & Pompe,

2002). The basic principle of this method is the transformation of the time signal into
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a sequence of symbols before estimating entropy. The complete description is given

in Sitt, Brain, 2014 (Sitt et al., 2014) The transformation is made by considering

consecutive sub-vectors of the signal of size n (n=3 here) and a parameter defining a

specific frequency band. After the symbolic transform, the probability of each symbol

is estimated, and PE is computed by applying Shannon’s entropy formula to the

probability distribution of the symbols.

The complexity of Kolmogorov Chaitin (KS) is represented by the size of the

smallest computer program that can be made to define this signal. The lower limit is

therefore estimated by applying lossless compression, that is to say, a compression

that restores after decompression a series of bits strictly identical to the original. The

degree of compression is then compared to the basic signal. Here we use an

open-source compressor: gzip. It uses a compression algorithm, a method called

Deflate including the LZ77 algorithm and Huffman coding.

The first is based on dictionary compression by transforming the sequence into 32

symbols, then we replace the recurring sequences with the position and the length of

the occurrences in a sliding window. The second is based on the construction of a

tree where we assign to each redundant sequence - a weight. Thus, after having

calculated the number of occurrences of a sequence, the more redundant the

sequence the more a small number of bits is allocated to code it. Compression by

gzip is therefore based on signal redundancy. We then compare the size of the

compression compared to the initial file. The more compressed the file, the less

information it contains.
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Markers of connectivity

The weighted symbolic mutual information (wSMI) can be used to evaluate

long-distance connectivity, details of the calculation are developed in King (King et

al., 2013). The wSMI is a measure based on the prediction of the theory of the global

workspace and of experiments concerning the conscious perception of subliminal

stimuli. Indeed, several studies (Dehaene et al., 2003) have shown a late use of the

frontoparietal network and above all an increase in the sharing of information

between brain areas. The EEG signal is transformed into a sequence of six symbolic

figures then the permutation entropy (PE) is calculated: we then take each pair of

electrodes and observe the conjunction of symbolic elements. Mutual information

measures the quantity of information distributed on average by a realization of X

over the probabilities of realization of Y. The SMI is weighted to ignore conjunctions

of identical or opposite symbols that may come from a common source of artifacts.

The connectivity measurement is obtained by taking the median value of all pairs of

electrodes.

Results

The 2D-representation: state versus content

We have shown the difficulty of studying the state and content of consciousness

under the same dimension. For the framework we represent the performance of a

given NCC marker using the area under the receiver operating characteristic curve

(AUC) contrasting two states of consciousness conditions (x-axis) or two content of

consciousness conditions (y-axis). The AUC represents the probability of the
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proposed NCC to discriminate between two conditions, in a value between 0 and 1

(1 means correct classification of all subjects, 0.5 is considered chance level).

First, we use the contrast between VS/UWS patients and MCS patients, the

vegetative state as a state of wakefulness without awareness and the minimally

conscious state as an awake state with minimal or inconsistent awareness of self or

the environment. Second, we used another popular contrast, the comparison of

NCC-S during wakefulness versus stage 2 (N2) of non-rapid eye movement (NREM)

sleep in healthy participants.

In our examples, conscious content (on the y-axis) is represented by the same

markers used in the x-axis but in this case contrasting a perceptual task between a

conscious condition and an unconscious condition. We also use the AUC of each

marker to differentiate between conscious and unconscious conditions. We used two

examples of conscious content tasks in healthy participants: 1) auditory local-global

paradigm using a complex auditory oddball paradigm and 2) visual awareness

paradigm using a visual backward masking paradigm (see methods).

The proposed axes divide the plane into four quadrants, subdivided into 9 zones.

The correspondence of each marker to a given quadrant determines how the marker

behaves in terms of state and content (Figure 1). Top right (AUC-x > 0.5 and AUC-y

> 0.5) and bottom left (AUC-x < 0.5 and AUC-y < 0.5) quadrants in light violet

correspond to markers that behave in unity in the state and content dimensions

(increase in conscious state and conscious content, or decrease in both

dimensions). In contrast, the top left (AUC-x < 0.5 and AUC-y > 0.5) and bottom right

(AUC-x > 0.5 and AUC-y < 0.5) quadrants in dark violet correspond to markers that

have opposite behaviors in both dimensions (increase in conscious state and
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decrease conscious content, or vice-versa). In addition, two blue / red zones around

the x / y axis correspond to either an increase or decrease of the markers that are

only valid for state (x, blue) or content (y, red) and the white area around 0.5

correspond to markers with no state- or content-specific information. The white zone

in the middle of the plane represents markers unrelated to either state of content.

This framework is generalizable across functional modalities and markers. Here we

use EEG recordings that have a high temporal resolution and can capture fast neural

changes in response to the aforementioned task paradigms. But this framework can

be extended to other neuroimaging modalities that allow distinction of state and

content of consciousness (e.g. fast functional magnetic resonance, MEG, intracranial

recordings, fNIRS, calcium imaging). The markers used in this study belong to a few

conceptual families in neural dynamics (spectral, information theory and connectivity)

and are defined in Sitt & King et al. (2014) and Engemann & Raimondo et al. (2018)

(also see Methods, Computation of markers). These markers have been shown to

have discriminatory power across the DoC (Sitt & King et al., 2014; Engemann &

Raimondo et al., 2018) and sleep spectra (Strauss et al., 2022, Turker & Musat &

Chabani et al., 2023).
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Figure 1: A 2D representation of state of consciousness and conscious content. The

decomposition of the space forms four quadrants. The light purple quadrants

correspond to the quadrants in which the content markers decrease when the level

of consciousness decreases and vice versa. Dark purple quadrants correspond to an

increase of content markers when the level of consciousness decreases (or

vice-versa). The blue band is the pure NCC-state, the red band is the pure

NCC-content and the white area is not specific to either NCC-state or NCC-content.

Example 1: Auditory local-global paradigm and disorders of

consciousness

State: We recorded high-density EEG during the active ‘local-global’ task (see

methods) in 388 disorders of consciousness patients (behavioral exam according to

CRS-R: 191 MCS and 197 VS/UWS) referred to our team at the Pitié-Salpêtrière

University Hospital in Paris for diagnostic and prognostic evaluations of
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consciousness. The same paradigm was used to obtain EEG recordings in 36

healthy participants.

Content: The local-global task (see methods) is an oddball auditory paradigm that

has two hierarchical levels of regularities: a "Local" regularity that triggers early

responses that are preserved in conscious and unconscious states, and a "Global"

regularity which triggers late evoked responses that are only present in awake,

conscious, and attentive subjects (Bekinschtein et al., 2009; J. R. King et al., 2013;

Strauss et al., 2015; Wacongne et al., 2011, Chennu et al., 2013). The neural

responses to the violation of each of these regularities can be quantified from two

complementary contrasts, the local contrast (local deviant (LD) trials versus local

standard (LS) trials) and the global contrast (global deviant (GD) trials versus global

standard (GS) trials). Here we focus on the global contrast as it indicates some level

of conscious content processing. In addition, this paradigm allows the computation of

different putative markers from segments of "pseudo-resting-state" (during the

stimulation (Engemann et al., 2018)) to contrast their power to index the different

states of consciousness in patients regardless of the stimulus content (Sitt et al.,

2014).

In this example, we represent different EEG markers in the proposed

two-dimensional space in order to differentiate their behavior according to the state

of consciousness or the conscious content (Figure 2). In the x-axis, representing

level, we use the “pseudo resting state” (see methods) of patients' data and we order

the markers according to the AUC on the VS/UWS versus MCS contrast. For the

y-axis, representing content, we used the global-local paradigm in healthy
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participants' data and we sorted the markers according to the AUC on the GD versus

GS conditions (Figure 2).

At first glance, one can observe that the markers are arranged in all four quadrants.

Surprisingly, several of the markers (|𝛼|, wSMI, PE, see the Methods for the marker

abbreviations) are located in the lower right quadrant, meaning that these markers

increase with the state of consciousness but decrease with conscious content.

Conversely, |δ| is on the upper left quadrant, indicating increasing values for

conscious content but decreasing for the state of consciousness. Finally, other

markers like |β|, |𝛾|, or KS were only significant for conscious content but not for

state. Finally, |θ| was only significant for the conscious state but not for content,

reflecting increasing values with the state of consciousness (minimally conscious >

vegetative states).

Notably, a sharp difference in the AUC of the EEG markers can be observed when

Local or Global contrasts are used for the content dimension (Figure 2. B, and

Supplementary Figure 1). The performance of the NCC to distinguish LD versus LS

is systematically lower compared to GD versus GS (p-value 0.016 of a paired

Wilcoxon signed-rank test). All but one (|θ|) of the NCC shows a better discriminative

performance for the Global effect in contrast to the Local effect.

21



Figure 2: A. Example #1, distribution of EEG markers in the state and content

dimensions for the auditory modality and disorders of consciousness patients.

The coordinate of each point in the x-axis represents the ability of the marker to

discriminate between VS/UWS and MCS patients. The coordinate at the same point

in the y-axis represents the ability of the marker to discriminate between the global

deviant and the global standard trials in the local-global paradigm in healthy

participants. Note that the crossing of the x-axis and y-axis is centered at 0.5, which

corresponds to discrimination at the level of chance. Points are colored according to

their statistical significance in either the content dimension, the state dimension or

both. B: The performance of EEG markers to discriminate GD to GS is higher than

the power of EEG markers to discriminate LD to LS. The detection of the global

deviant is a marker of conscious content whereas the local deviant is an automatic

response to the novelty. In the figure, 0.5 is subtracted from the values of the AUC.

See the Methods for marker abbreviations.
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Example 2: Visual awareness paradigm and nap in healthy participants

State: In this second example, for the x-axis, we use 26 EEG recordings in healthy

participants during a nap opportunity of two hours and we order the markers

according to the AUC discrimination on wakefulness versus N2 sleep.

Content: for the Y-axis we used high-density EEG recordings in 35 healthy

participants during a visual, backward masking, awareness paradigm (Del Cul et al.,

2007). This visual awareness paradigm is designed to suppress visual perception by

presenting a visual stimulus (‘mask’) immediately after another visual stimulus

(‘target’). This manipulation causes a failure of the first stimulus perception. In this

example, the values for each marker on the y-axis are determined by the AUC when

contrasting seen versus unseen trials (Figure 3).

Similar to the results obtained in experiment 1, most of the markers are on the lower

right half of the graph (|α|, |β|, |𝛾|, KS, wSMI, PE) but contrary to the first experiment,

none of the markers are content-only. Interestingly, wSMI, KS, PE, and |α| are

significant only for state, whereas |β| and |γ| are significant for both state and

content. The two last markers |δ|, |θ| are in the top left quadrant and significant for

both state and content which means that they increase for content while they

decrease with the state of consciousness.
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Figure 3: Example #2, Behavior of EEG markers in the state and content

dimensions for the visual awareness dataset and healthy participants nap. The

coordinate of each point in the x-axis represents the ability of the marker to

discriminate between wakefulness and N2 sleep. The coordinate in the Y-axis of the

same point represents the ability of the marker to discriminate between seen and

not-seen targets during the visual awareness paradigm. See the Methods for the

marker abbreviations.

Discussion

In this work we propose a framework that permits the direct comparison of neural

correlates of conscious state and conscious content in the same space. With two

implementation examples we show that neural correlates depict different properties

in discriminating these dimensions of consciousness.

While several studies have attempted to study content and state separately, a

theoretical development proposes a three-dimensional axis with an x-axis
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corresponding to subjective conscious content (as reported by the subject), the

y-axis to the objective state of consciousness (defined by behavior and body

signals), and the z-axis to a subjective state of consciousness (as reported by the

subject) (Bachmann, 2012). In the examples presented here we used NCCs of

objective state of consciousness in the Y axis. However, the proposed framework is

also compatible when subjective state NCCs are considered. Bayne and colleagues

on the other hand, propose a multidimensional graph like a radar chart with different

axes (Bayne et al., 2016): content-related (e.g., content gating and content range)

and functional dimensions (e.g., relating to attentional control, memory consolidation,

verbal report, reasoning, action selection, etc.). The problem with this representation

is that it is difficult to standardize and, hence, less applicable. Interestingly, Sergent

and colleagues (Sergent et al., 2017) created a unique EEG protocol allowing to

explore 8 axes (own name recognition, temporal attention, spatial attention,

detection of spatial incongruence motor planning, and modulations of these effects

by the global context) but the construction of such a paradigm is complex.

For Chalmers, studying content and conscious state at the same time is difficult in

experimental conditions (Chalmers, 1997), with most studies contrasting variable

content in a given state of consciousness or studying brain differences in different

states. Thus, the challenge in this two-dimensional representation of NCC is to find a

minimal relevant contrast. In these two examples, we contrast both, conscious state

and conscious content, but independently. The state was studied by contrasting

either wakefulness and sleep or VS/UWS patients and MCS patients classified in the

clinic, since the MCS state is considered an altered state of consciousness and the

VS/UWS state as a state of wakefulness without awareness. However, we have to

note here that the VS/UWS versus MCS contrast is less dichotomous than it seems
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due to the possibility that some VS/UWS patients are in a covert conscious condition

(as called cognitive motor dissociation - CMD) (Owen et al., 2006; Schiff, 2015) as

well as the heterogeneity within the two clinical categories (Naccache 2018;

Hermann & Sangare et al., 2021).

We also studied the condition by contrasting healthy subjects in non-REM N2 sleep

and in the awake state. The interest of such an approach is to show that the study of

the different global states of consciousness also works for healthy participants.

The framework is flexible and can be extended to, for example, higher level states of

consciousness such as MCS+ versus MCS- but also to choose contrasts in other

circumstances: rapid eye movement (REM) sleep, lucid dreams or anesthesia in

healthy participants.

The conscious content was studied in two modalities: auditory and visual. There is a

high distance in the contrast of the conscious content between the sensory

modalities, but also due to the type of perceptual processing (masking, threshold

vision, detection of novelty), the challenge is to find a sufficiently salient contrast

between the conscious and unconscious condition to capture, unambiguously, the

cognitive/perceptual differences to obtain a robust neural characterization.

The first example, the auditory local-global paradigm is particularly powerful because

it allows for a dual analysis, first, the study of the early, automatic response to

novelty (Figure 2 B and Supplementary Figure 1), and second, the late and

conscious response (Figure 2). The first analysis of this experience is therefore a

kind of control, since previous studies demonstrated that the brain processing of this

rule does not require conscious awareness. In this example, we confirm with the
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local-deviant / local-standard (LD/LS) contrast that the putative NCC (EEG markers)

are less able to discriminate between the two conditions compared to the

global-deviant / global-standard (GD/GS) contrast.

The second example, wake-sleep and visual conscious access, uses the proposed

representation with a different task such as a visual perception protocol as well as

other states of consciousness such as NREM sleep. Comparison between the two

examples highlights and challenges the fact that the different EEG markers evolve in

the same direction according to the level of consciousness and the conscious

content.

Our original hypothesis was that most markers would be located in the light purple

quadrants (top-right and bottom left) of the graphical representation (see Figure 1),

i.e. markers that increase with the state of consciousness and that also increase with

the conscious content. In fact, most of the NCC lie in the quadrants of the inverse

relationship between state and content suggesting that they might play different roles

in the state and content contrast. This result stresses the relevance of the proposed

2D framework to characterize simultaneously the behavior of NCC in both the state

and content dimensions.

Although the analyses of the exact location of each NCC lie beyond the original

objectives of this work (because this location depends on the used cognitive protocol

or the exact methodological recipe to compute them) we will anyhow try to briefly

interpret them. The results in spectral power are consistent with some previous work:

while delta decreases with higher states of consciousness theta and alpha both

increase and higher frequencies are less informative (Sitt and King et al. 2014). In

terms of conscious content, we found that delta and theta were higher in seen
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conditions, which may reflect the slow late potentials associated with conscious

access, a process uniquely underlying awareness. Contrary to some results in the

literature we also found a reduction of gamma power, this is likely due to the more

careful computation we used (20-40 Hz, average across all electrodes and

normalized to the full spectrum power), as supported by Dwarakanath and

colleagues (Dwarakanath et al., 2023), who investigate the changes in conscious

content in the prefrontal cortex using a binocular rivalry paradigm and show that

there is a suppression of 20-40 Hz activity concurrent with 1-9 Hz transients, both of

which follow the exogenous stimulus changes of physical stimulus alternations.

Importantly, these high-frequency suppressions and 1-9 Hz transients, precede the

endogenous binocular rivalry perceptual transitions.

The same is true for markers of complexity and functional connectivity that decrease

in the post-perceptual period with conscious content. This could be explained by a

"gating" mechanism, where the conscious perceptual input would close, creating a

refractory period, which is reflected in a decrease of these markers in

post-perceptual time. The reduction in complexity with conscious content is also

compatible with the proposal of higher stability of neuronal activity during conscious

access (Schurger et al., 2015). Conversely, the NCC-S markers have a more

intuitive interpretation that is aligned with existing literature. The NCC-S markers

analysis in the second example (Figure 3) is mostly consistent with well-established

knowledge of the relative spectral characteristics of wakefulness versus various

sleep stages (Iber et al., 2007; Imperatori et al., 2021). In N2 sleep, we observe an

increase in the relative delta and theta powers, as well as a decrease in alpha, beta,

and gamma bands, which is aligned with previous reports (Imperatori et al., 2021,

where all band comparisons are reported to be significant except for theta).
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Furthermore, we observe an increase in wSMI for the theta band in N2 sleep, which

is present, but not strong enough, in Imperatori et al., 2021.

Reflecting on Figure 3, we can therefore think that there is a temporal constraint on

the functional cognitive architecture theorized under the name of a cognitive cycle

(Madl et al., 2011). According to its authors, awareness would consist of cascading

cycles of recurrent cerebral events. Each cognitive cycle would then detect the

current situation and interpret it according to a given context. According to Franklin

and colleagues (Franklin et al., 2005), ''conscious events occur as a sequence of

discrete, coherent episodes separated by quite short periods of no conscious

content'' similar to the frames of a movie, these frames of consciousness would be

discrete but the conscious experience would seem continuous. A complementary

framework is proposed by Herzog et al. (2016) where the authors argue for a

rendering of the unconscious content in discrete conscious moments. They propose

a two-stage model which is different from ‘snapshot’ theories. Visual information is

processed unconsciously with a high temporal resolution followed by a discrete

conscious percept (the outputs of unconscious processing) at a slower rate than the

visual sampling (Herzog et al., 2016). This rate of conscious percepts is not fixed but

depends on the unconscious processing reaching an attractor state (Herzog et al.,

2016).

The two examples presented here should only be considered use cases and we

postulate that the proposed space characterizing NCC should be compatible with

types of contrasts represented in the Y-axis (e.g. crowding protocols, subliminal

images, binocular rivalry, non-report paradigms, etc.) or in the X-axis (e.g.

anesthesia, epileptic seizures, developmental stages, etc.). In a similar vein, the
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NCC that we used to populate the 2D space are examples of EEG-based NCC used

in the literature, our proposed framework permits to include any NCC (and in any

neuroimaging modality) as long as it can be computed in state and content

assessments.

We would like to emphasize that although we map the space of these content and

level correlates, we do not imply that only empirical correlates of consciousness (and

not their underlying mechanisms) can be studied. Ideas coming from information

theory such as the information decomposition approach (Mediano et al., 2022; Vinck

et al., 2023) and biophysical models (Luppi et al., 2023) try to capture the neural

signatures that are potential echoes (and not correlates) of the neural

implementation of the processing of a content or the underlying dynamics that

maintain a specific state. The framework that we propose, can in turn be used as

one form of evaluation of these models. For example, summary metrics of a

biophysical model, or neural signatures that can be interpreted in terms of

information and not simple communication or shared oscillatory activity, can be put

into the two-dimensional space and depending on whether they underlie processes

of states of consciousness or process of the perception of specific contents, they will

be expected in a certain quadrant.

Conclusion

We show that it is possible to represent in a two-dimensional space representing

NCC performance discriminating content and state of consciousness, and also its

commonalities. The proposed space is valid in different perceptual modalities with

diverse contrasts. The values of this representation are both theoretical and

experimental because it allows to disentangle content and state of consciousness
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signatures by studying multiple contrasts in the same framework, constituting an

important tool to better interpret the true neuronal mechanisms underlying

consciousness and cognition in different states and for different contents.
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Supplementary Materials
State Content Content State Content

Markers VS_MCS LS_LD GS_GD sleep_wake unseen_seen

Kolmogorov
Complexity

(KS)
0.355 0.732 1.1642E-09 3.815E-06 1

Permutation
Entropy (PE)

theta
8.222E-08 0.246 5.821E-09 4.768E-05 0.273

weighted
Symbolic
Mutual

Information
(wSMI) theta

7.998E-07 0.010 2.049E-08 0.001 1

Delta
normalized 0.0003 7.942E-05 0.0002 9.537E-06 0.001

Theta
normalized 3.235E-06 0.037 0.397 0.010 0.009

Alpha
normalized 1.011E-08 0.0002 4.657E-10 3.624E-05 0.127

Beta
normalized 1 0.035 2.314E-06 2.670E-05 0.002

Gamma
normalized 1 0.227 2.328E-10 1.907E-06 0.005
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Supplementary Table 1: p-values per marker of the Mann-Whitney and Wilcoxon

statistical tests between the two distributions. All values are Bonferroni corrected for

multiple tests (see Materials).

State Content Content State Content

Markers VS_MCS LS_LD GS_GD sleep_wake unseen_seen

Kolmogorov
Complexity

(KS)
0.559

(0.502, 0.616)
0.355

(0.227, 0.482)
0.016

(0.0, 0.043)
0.996

(0.981, 1.0)
0.395

(0.266, 0.54)

Permutation
Entropy (PE)

theta
0.668

(0.613, 0.723)
0.322

(0.212, 0.461)
0.038

(0.0, 0.101)
0.96

(0.881, 1.0)
0.323

(0.203, 0.458)

weighted
Symbolic
Mutual

Information
(wSMI) theta

0.656
(0.601, 0.709)

0.29
(0.183, 0.424)

0.12
(0.049, 0.215)

0.9
(0.777, 0.989)

0.514
(0.368, 0.642)

Delta
normalized

0.38
(0.325, 0.437)

0.857
(0.761, 0.929)

1.0
(1.0, 1.0)

0.026
(0.0, 0.091)

0.825
(0.717, 0.913)

Theta
normalized

0.649
(0.593, 0.702)

0.764
(0.653, 0.868)

0.684
(0.556, 0.814)

0.142
(0.04, 0.269)

0.806
(0.686, 0.896)

Alpha
normalized

0.678
(0.623, 0.731)

0.188
(0.1, 0.301)

0.033
(0.002, 0.087)

0.947
(0.85, 1.0)

0.304
(0.186, 0.437)

Beta
normalized

0.528
(0.471, 0.586)

0.243
(0.132, 0.357)

0.077
(0.014, 0.152)

0.977
(0.929, 1.0)

0.162
(0.077, 0.273)

Gamma
normalized

0.481
(0.425, 0.54)

0.309
(0.18, 0.422)

0.149
(0.067, 0.252)

1.0
(1.0, 1.0)

0.193
(0.1, 0.307)

Supplementary Table 2: Area Under the Curve (AUC) values per condition and per

marker with 0.95% confidence intervals (CI) calculated using 10,000 bootstrapped

iterations. The format is AUC (lower bound CI, higher bound CI).
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Supplementary Figure 1: Example #1, Behavior of EEG markers in the state and

content dimensions for the auditory local-global dataset and disorders of

consciousness patients. Each point represents in the x-axis the ability of the marker

to discriminate between VS/UWS and MCS patients. In the y-axis, we represent the

ability of the marker to discriminate between the local deviant and the local standard

trials in the local-global paradigm. Note that the zero of the axes is centered at 0.5.

An AUC of 0.5 corresponds to discrimination at the same level of chance. See the

Methods for the marker abbreviations.
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