001034745 001__ 1034745
001034745 005__ 20250203103358.0
001034745 0247_ $$2doi$$a10.1101/2024.10.13.618080
001034745 0247_ $$2datacite_doi$$a10.34734/FZJ-2024-07502
001034745 037__ $$aFZJ-2024-07502
001034745 1001_ $$0P:(DE-Juel1)185083$$aRaimondo, Federico$$b0$$eCorresponding author
001034745 245__ $$aCan we predict sleep health based on brain features? A large-scale machine learning study
001034745 260__ $$c2024
001034745 3367_ $$0PUB:(DE-HGF)25$$2PUB:(DE-HGF)$$aPreprint$$bpreprint$$mpreprint$$s1736237894_16926
001034745 3367_ $$2ORCID$$aWORKING_PAPER
001034745 3367_ $$028$$2EndNote$$aElectronic Article
001034745 3367_ $$2DRIVER$$apreprint
001034745 3367_ $$2BibTeX$$aARTICLE
001034745 3367_ $$2DataCite$$aOutput Types/Working Paper
001034745 520__ $$aObjectives Normal sleep is crucial for brain health. Recent studies have reported robust associations between sleep disturbance and various brain structural and functional traits. However, the complex interplay between sleep health and macro-scale brain organization remains inconclusive. In this study, we aimed to uncover the links between brain imaging features and diverse sleep health-related characteristics by means of Machine Learning (ML).Methods We used 28,088 participants from the UK Biobank to calculate 4677 structural and functional neuroimaging markers. Then, we employed them to predict self-reported insomnia symptoms, sleep duration, easiness getting up in the morning, chronotype, daily nap, daytime sleepiness, and snoring. We built seven different linear and nonlinear ML models for each sleep health-related characteristic to assess their predictability.Results We performed an extensive ML analysis that involved more than 100,000 hours of computing. We observed relatively low performance in predicting all sleep health-related characteristics (e.g., balanced accuracy ranging between 0.50-0.59). Across all models, the best performance achieved was 0.59, using a Linear SVM to predict easiness getting up in the morning.Conclusions The low capability of multimodal neuroimaging markers in predicting sleep health-related characteristics, even under extensive ML optimization in a large population sample suggests a complex relationship between sleep health and brain organization.
001034745 536__ $$0G:(DE-HGF)POF4-5252$$a5252 - Brain Dysfunction and Plasticity (POF4-525)$$cPOF4-525$$fPOF IV$$x0
001034745 588__ $$aDataset connected to CrossRef
001034745 7001_ $$0P:(DE-Juel1)190453$$aBi, Hanwen$$b1
001034745 7001_ $$0P:(DE-Juel1)187351$$aKomeyer, Vera$$b2
001034745 7001_ $$0P:(DE-Juel1)184653$$aKasper, Jan$$b3
001034745 7001_ $$0P:(DE-HGF)0$$aPrimus, Sabrina$$b4
001034745 7001_ $$0P:(DE-Juel1)131684$$aHoffstaedter, Felix$$b5
001034745 7001_ $$0P:(DE-Juel1)194319$$aMandal, Synchon$$b6
001034745 7001_ $$0P:(DE-Juel1)178653$$aWaite, Laura$$b7
001034745 7001_ $$0P:(DE-HGF)0$$aWinkelmann, Juliane$$b8
001034745 7001_ $$0P:(DE-HGF)0$$aOexle, Konrad$$b9
001034745 7001_ $$0P:(DE-Juel1)131678$$aEickhoff, Simon B.$$b10
001034745 7001_ $$0P:(DE-Juel1)188400$$aTahmasian, Masoud$$b11
001034745 7001_ $$0P:(DE-Juel1)172843$$aPatil, Kaustubh R.$$b12
001034745 773__ $$a10.1101/2024.10.13.618080
001034745 8564_ $$uhttps://juser.fz-juelich.de/record/1034745/files/Raimondo%20et%20al.%20-%202024%20-%20Can%20we%20predict%20sleep%20health%20based%20on%20brain%20feature.pdf$$yOpenAccess
001034745 909CO $$ooai:juser.fz-juelich.de:1034745$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
001034745 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)185083$$aForschungszentrum Jülich$$b0$$kFZJ
001034745 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)190453$$aForschungszentrum Jülich$$b1$$kFZJ
001034745 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)187351$$aForschungszentrum Jülich$$b2$$kFZJ
001034745 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)184653$$aForschungszentrum Jülich$$b3$$kFZJ
001034745 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131684$$aForschungszentrum Jülich$$b5$$kFZJ
001034745 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)194319$$aForschungszentrum Jülich$$b6$$kFZJ
001034745 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)178653$$aForschungszentrum Jülich$$b7$$kFZJ
001034745 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131678$$aForschungszentrum Jülich$$b10$$kFZJ
001034745 9101_ $$0I:(DE-HGF)0$$6P:(DE-Juel1)131678$$a HHU Düsseldorf$$b10
001034745 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)188400$$aForschungszentrum Jülich$$b11$$kFZJ
001034745 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)172843$$aForschungszentrum Jülich$$b12$$kFZJ
001034745 9131_ $$0G:(DE-HGF)POF4-525$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5252$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vDecoding Brain Organization and Dysfunction$$x0
001034745 9141_ $$y2024
001034745 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001034745 915__ $$0LIC:(DE-HGF)CCBYNCND4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
001034745 920__ $$lyes
001034745 9201_ $$0I:(DE-Juel1)INM-7-20090406$$kINM-7$$lGehirn & Verhalten$$x0
001034745 9801_ $$aFullTexts
001034745 980__ $$apreprint
001034745 980__ $$aVDB
001034745 980__ $$aUNRESTRICTED
001034745 980__ $$aI:(DE-Juel1)INM-7-20090406