001     1034745
005     20250203103358.0
024 7 _ |a 10.1101/2024.10.13.618080
|2 doi
024 7 _ |a 10.34734/FZJ-2024-07502
|2 datacite_doi
037 _ _ |a FZJ-2024-07502
100 1 _ |a Raimondo, Federico
|0 P:(DE-Juel1)185083
|b 0
|e Corresponding author
245 _ _ |a Can we predict sleep health based on brain features? A large-scale machine learning study
260 _ _ |c 2024
336 7 _ |a Preprint
|b preprint
|m preprint
|0 PUB:(DE-HGF)25
|s 1736237894_16926
|2 PUB:(DE-HGF)
336 7 _ |a WORKING_PAPER
|2 ORCID
336 7 _ |a Electronic Article
|0 28
|2 EndNote
336 7 _ |a preprint
|2 DRIVER
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a Output Types/Working Paper
|2 DataCite
520 _ _ |a Objectives Normal sleep is crucial for brain health. Recent studies have reported robust associations between sleep disturbance and various brain structural and functional traits. However, the complex interplay between sleep health and macro-scale brain organization remains inconclusive. In this study, we aimed to uncover the links between brain imaging features and diverse sleep health-related characteristics by means of Machine Learning (ML).Methods We used 28,088 participants from the UK Biobank to calculate 4677 structural and functional neuroimaging markers. Then, we employed them to predict self-reported insomnia symptoms, sleep duration, easiness getting up in the morning, chronotype, daily nap, daytime sleepiness, and snoring. We built seven different linear and nonlinear ML models for each sleep health-related characteristic to assess their predictability.Results We performed an extensive ML analysis that involved more than 100,000 hours of computing. We observed relatively low performance in predicting all sleep health-related characteristics (e.g., balanced accuracy ranging between 0.50-0.59). Across all models, the best performance achieved was 0.59, using a Linear SVM to predict easiness getting up in the morning.Conclusions The low capability of multimodal neuroimaging markers in predicting sleep health-related characteristics, even under extensive ML optimization in a large population sample suggests a complex relationship between sleep health and brain organization.
536 _ _ |a 5252 - Brain Dysfunction and Plasticity (POF4-525)
|0 G:(DE-HGF)POF4-5252
|c POF4-525
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Bi, Hanwen
|0 P:(DE-Juel1)190453
|b 1
700 1 _ |a Komeyer, Vera
|0 P:(DE-Juel1)187351
|b 2
700 1 _ |a Kasper, Jan
|0 P:(DE-Juel1)184653
|b 3
700 1 _ |a Primus, Sabrina
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Hoffstaedter, Felix
|0 P:(DE-Juel1)131684
|b 5
700 1 _ |a Mandal, Synchon
|0 P:(DE-Juel1)194319
|b 6
700 1 _ |a Waite, Laura
|0 P:(DE-Juel1)178653
|b 7
700 1 _ |a Winkelmann, Juliane
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Oexle, Konrad
|0 P:(DE-HGF)0
|b 9
700 1 _ |a Eickhoff, Simon B.
|0 P:(DE-Juel1)131678
|b 10
700 1 _ |a Tahmasian, Masoud
|0 P:(DE-Juel1)188400
|b 11
700 1 _ |a Patil, Kaustubh R.
|0 P:(DE-Juel1)172843
|b 12
773 _ _ |a 10.1101/2024.10.13.618080
856 4 _ |u https://juser.fz-juelich.de/record/1034745/files/Raimondo%20et%20al.%20-%202024%20-%20Can%20we%20predict%20sleep%20health%20based%20on%20brain%20feature.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:1034745
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)185083
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)190453
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)187351
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)184653
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)131684
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)194319
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)178653
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 10
|6 P:(DE-Juel1)131678
910 1 _ |a HHU Düsseldorf
|0 I:(DE-HGF)0
|b 10
|6 P:(DE-Juel1)131678
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 11
|6 P:(DE-Juel1)188400
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 12
|6 P:(DE-Juel1)172843
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-525
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Decoding Brain Organization and Dysfunction
|9 G:(DE-HGF)POF4-5252
|x 0
914 1 _ |y 2024
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
|0 LIC:(DE-HGF)CCBYNCND4
|2 HGFVOC
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)INM-7-20090406
|k INM-7
|l Gehirn & Verhalten
|x 0
980 1 _ |a FullTexts
980 _ _ |a preprint
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)INM-7-20090406


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21