001034769 001__ 1034769
001034769 005__ 20250203103359.0
001034769 0247_ $$2doi$$a10.5281/ZENODO.14001852
001034769 037__ $$aFZJ-2024-07524
001034769 1001_ $$0P:(DE-HGF)0$$aHoppe, Fabian$$b0
001034769 245__ $$aHeat (v1.5.0)
001034769 250__ $$a1.5.0
001034769 260__ $$c2024
001034769 3367_ $$2DCMI$$aSoftware
001034769 3367_ $$0PUB:(DE-HGF)33$$2PUB:(DE-HGF)$$aSoftware$$bsware$$msware$$s1736770887_16364
001034769 3367_ $$2BibTeX$$aMISC
001034769 3367_ $$06$$2EndNote$$aComputer Program
001034769 3367_ $$2ORCID$$aOTHER
001034769 3367_ $$2DataCite$$aSoftware
001034769 520__ $$aHeat 1.5 Release Notes Overview Highlights Performance Improvements Sparse Signal Processing RNG Statistics Manipulations I/O Machine Learning Deep Learning Other Updates Contributors Overview With Heat 1.5 we release the first set of features developed within the ESAPCA project co-funded by the European Space Agency (ESA). The main focus of this release is on distributed linear algebra operations, such as tall-skinny SVD, batch matrix multiplication, and triangular solver. We also introduce vectorization via vmap across MPI processes, and batch-parallel random number generation as default for distributed operations. This release also includes a new class for distributed Compressed Sparse Column matrices, paving the way for future implementation of distributed sparse matrix multiplication. On the performance side, our new array redistribution via MPI Custom Datatypes provides significant speed-up in operations that require it, such as FFTs. We are grateful to our community of users, students, open-source contributors, the European Space Agency and the Helmholtz Association for their support and feedback. Highlights [ESAPCA] Distributed tall-skinny SVD: ht.linalg.svd (by @mrfh92) Distributed batch matrix multiplication: ht.linalg.matmul (by @FOsterfeld) Distributed solver for triangular systems: ht.linalg.solve_triangular (by @FOsterfeld) Vectorization across MPI processes: ht.vmap (by @mrfh92) Other Changes Performance Improvements #1493 Redistribution speed-up via MPI Custom Datatypes available by default in ht.resplit (by @JuanPedroGHM) Sparse #1377 New class: Distributed Compressed Sparse Column Matrix ht.sparse.DCSC_matrix() (by @Mystic-Slice) Signal Processing #1515 Support batch 1-d convolution in ht.signal.convolve (by @ClaudiaComito) RNG #1508 Introduce batch-parallel RNG as default for distributed operations (by @mrfh92) Statistics #1420 Support sketched percentile/median for large datasets with ht.percentile(sketched=True) (and ht.median) (by @mrhf92) #1510 Support multiple axes for distributed ht.percentile and ht.median (by @ClaudiaComito) Manipulations #1419 Implement distributed unfold operation (by @FOsterfeld) I/O #1602 Improve load balancing when loading .npy files from path (by @Reisii) #1551 Improve load balancing when loading .csv files from path (by @Reisii) Machine Learning #1593 Improved batch-parallel clustering ht.cluster.BatchParallelKMeans and ht.cluster.BatchParallelKMedians (by @mrfh92) Deep Learning #1529 Make dataset.ishuffle optional. (by @krajsek) Other Updates #1618 Support mpi4py 4.x.x (by @JuanPedroGHM) Contributors @mrfh92, @FOsterfeld, @JuanPedroGHM, @Mystic-Slice, @ClaudiaComito, @Reisii, @mtar and @krajsek
001034769 536__ $$0G:(DE-HGF)POF4-5112$$a5112 - Cross-Domain Algorithms, Tools, Methods Labs (ATMLs) and Research Groups (POF4-511)$$cPOF4-511$$fPOF IV$$x0
001034769 536__ $$0G:(DE-HGF)POF4-5111$$a5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511)$$cPOF4-511$$fPOF IV$$x1
001034769 588__ $$aDataset connected to DataCite
001034769 7001_ $$0P:(DE-HGF)0$$aOsterfeld, Fynn$$b1
001034769 7001_ $$0P:(DE-HGF)0$$aGutiérrez Hermosillo Muriedas, Juan Pedro$$b2
001034769 7001_ $$0P:(DE-HGF)0$$aVaithinathan Aravindan, Ashwath$$b3
001034769 7001_ $$0P:(DE-Juel1)174573$$aComito, Claudia$$b4$$ufzj
001034769 7001_ $$0P:(DE-Juel1)129347$$aKrajsek, Kai$$b5$$ufzj
001034769 7001_ $$0P:(DE-HGF)0$$aNguyen Xuan, Tu$$b6
001034769 7001_ $$0P:(DE-Juel1)178977$$aTarnawa, Michael$$b7$$ufzj
001034769 7001_ $$0P:(DE-HGF)0$$aCoquelin, Daniel$$b8
001034769 7001_ $$0P:(DE-HGF)0$$aDebus, Charlotte$$b9
001034769 7001_ $$0P:(DE-HGF)0$$aGötz, Markus$$b10
001034769 7001_ $$0P:(DE-Juel1)132123$$aHagemeier, Björn$$b11$$ufzj
001034769 7001_ $$0P:(DE-HGF)0$$aKnechtges, Philipp$$b12
001034769 7001_ $$0P:(DE-HGF)0$$aRüttgers, Alexander$$b13
001034769 773__ $$a10.5281/ZENODO.14001852
001034769 909CO $$ooai:juser.fz-juelich.de:1034769$$pVDB
001034769 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)174573$$aForschungszentrum Jülich$$b4$$kFZJ
001034769 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129347$$aForschungszentrum Jülich$$b5$$kFZJ
001034769 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)178977$$aForschungszentrum Jülich$$b7$$kFZJ
001034769 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)132123$$aForschungszentrum Jülich$$b11$$kFZJ
001034769 9131_ $$0G:(DE-HGF)POF4-511$$1G:(DE-HGF)POF4-510$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5112$$aDE-HGF$$bKey Technologies$$lEngineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action$$vEnabling Computational- & Data-Intensive Science and Engineering$$x0
001034769 9131_ $$0G:(DE-HGF)POF4-511$$1G:(DE-HGF)POF4-510$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5111$$aDE-HGF$$bKey Technologies$$lEngineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action$$vEnabling Computational- & Data-Intensive Science and Engineering$$x1
001034769 9141_ $$y2024
001034769 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0
001034769 980__ $$asware
001034769 980__ $$aVDB
001034769 980__ $$aI:(DE-Juel1)JSC-20090406
001034769 980__ $$aUNRESTRICTED