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We show that domain walls separating coexisting extremal current phases in driven diffusive systems
exhibit complex stochastic dynamics with a subdiffusive temporal growth of position fluctuations due to
long-range anticorrelated current fluctuations and a weak pinning at long times. This weak pinning
manifests itself in a saturated width of the domain wall position fluctuations that increases sublinearly with
the system size. As a function of time t and system size L, the width wðt; LÞ has a scaling behavior
wðt; LÞ ¼ L3=4fðt=L9=4Þ, with fðuÞ constant for u ≫ 1 and fðuÞ ∼ u1=3 for u ≪ 1. An Orstein-Uhlenbeck
process with long-range anticorrelated noise is shown to capture this scaling behavior. The exponent 9=4 is
a new dynamical exponent for relaxation processes in driven diffusive systems.
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Driven diffusive systems of interacting particles exhibit
a large variety of nonequilibrium structures [1,2].
Fundamental aspects of them, such as the occurrence of
phase boundaries even in one dimension or the appearance
of dynamical critical behavior in the celebrated Kardar-
Parisi-Zhang (KPZ) universality class [3,4], can be under-
stood from the study of driven lattice gas (DLG) models
[2,5–14]. These models have found numerous applications,
ranging from microscale processes, such as ionic, colloidal,
and molecular transport through narrow channels [15–17],
ribosome translation along mRNA strands [18–23], cargo
transport and motility of molecular motors [24–27], or
interface growth [28–30] to macroscopic processes subject
to randomness like vehicular traffic [9,31–35].
In DLGs with boundaries open to particle reservoirs,

phase transitions between nonequilibrium steady states
occur even in one dimension [36,37]. They manifest
themselves in a singular behavior of the bulk particle
density ρB as a function of the control parameters, which
are the rates of particle injection from and ejection into the
reservoirs. By applying bulk-adapted couplings [38–40], all
possible nonequilibrium phases can be inferred from the
principle of extremal current [41]: for particle densities ρL
and ρR of reservoirs at the left and right boundary, the bulk
density ρB in the system’s interior is

ρB ¼
8<
:

argmin
ρL≤ρ≤ρR

fjBðρÞg; ρL ≤ ρR;

argmax
ρR≤ρ≤ρL

fjBðρÞg; ρR ≤ ρL;
ð1Þ

where jBðρÞ is the current in the nonequilibrium steady
state (NESS) of a closed system, as, e.g., obtained for
periodic boundary conditions. Equation (1) implies that if
jBðρÞ has a local extremum at some ρext, an extremal
current phase with ρB ¼ ρext must occur. These phases are
particularly interesting because they are determined by the
intrinsic dynamics: the bulk density is controlled but not
induced by the coupling to reservoirs.
The dynamics of phase boundaries between coexisting

nonequilibrium phases with different ρB have been studied
in the prototype DLG [42–44], the asymmetric simple
exclusion process (ASEP) and variants of it, where particle
interactions are solely due to site exclusion, i.e., a lattice
site can be occupied by at most one particle. In the standard
ASEP, two boundary-induced phases with ρB ¼ ρL and
ρB ¼ ρR coexist at ρL ¼ 1 − ρR ≤ 1=2 [45,46] and the
domain wall (DW) separating them performs a random
walk with reflecting boundaries. The universal dynamical
critical behavior of open DLGs is thus widely considered to
be well understood: Density fluctuations relax with the
dynamical exponent z ¼ 3=2 of the KPZ universality
class [36], while the diffusive dynamical critical exponent
z ¼ 2 governs the domain wall fluctuations [42].
In this Letter we unravel the dynamical behavior of

phase boundaries between coexisting extremal current
phases which appear in the presence of two local maxima
(minima) at densities ρ1 ≠ ρ2 with jBðρ1Þ ¼ jBðρ2Þ.
A representative model having a current-density relation
with two degenerate local maxima is the ASEP with
repulsive nearest neighbor-interactions between particles
[39–41,47].
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We show that the DW separating the two maximal
current phases exhibits a fascinating dynamical and locali-
zation behavior: the fluctuations of its position have a width
w increasing subdiffusively with time due to long-range
anticorrelations of local current fluctuations, w ∼ t1=3. At
long times, w saturates at a value wsat increasing sublinearly
with the system size L, wsat ∼ L3=4. This implies that the
DW in the saturated regime appears randomly over an
infinite region in the thermodynamic limit, while it covers a
zero fraction of the system, as the relative saturated width
wsat=L ∼ L−1=4 goes to zero for L → ∞. We refer to this
localization behavior as weak pinning of the DW. As a
function of t and L, wðt; LÞ obeys the scaling law

wðt; LÞ ¼ Lαfðt=LzÞ; ð2Þ

where α ¼ 3=4, z ¼ 9=4, and fðuÞ ∼ uβ with β ¼ 1=3 for
u ≪ 1, and fðuÞ ∼ const for u ≫ 1. A Langevin equation is
set up, which describes the scaling behavior of wðt; LÞ. The
stochastic DW motion provides an intriguing example for
anomalous subdiffusion generated by long-range autocor-
related noise, and the unexpected dynamic exponent 9=4 is
intimately connected to the weak pinning effect.
Figure 1(a) illustrates the totally asymmetric simple

exclusion process (TASEP) with nearest-neighbor inter-
actions and open boundaries. The particles perform uni-
directional jumps between neighboring lattice sites i,

i ¼ 1;…; L, where the jump rate Γiðni−1; niþ2Þ from a
site i to a vacant site (iþ 1) is given by the Glauber rate

Γiðni−1; niþ2Þ ¼
ν

exp½Vðniþ2 − ni−1Þ� þ 1
: ð3Þ

Here, ν is an attempt frequency and V the repulsive nearest-
neighbor interaction in units of the thermal energy; ni are
occupation numbers, i.e., ni ¼ 1 if site i is occupied and
ni ¼ 0 otherwise. We use ν−1 and the lattice constant as
time and length units, respectively. The particle injection
and ejection rates at the boundaries are bulk adapted
[40,48]. Further details of the model are given in the
Supplemental Material (SM) [49].
Above a critical value Vc ¼ 2 ln 3, the bulk current-

density relation jBðρÞ has a double hump structure, where
ρ ¼ hnii with h� � �i the average in the NESS. The relation is
known exactly [40,48] and shown in Fig. 1(b) for V ¼ 2Vc.
It has maxima at ρmax

1 ¼ð1− ½3−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8eV=ðeV −1Þ

p
�1=2Þ=2≅

0.304 and ρmax
2 ¼ 1 − ρmax

1 ≅ 0.696. Applying the extremal
current principle (1) yields the phase diagram in Fig. 1(c).
In the whole yellow-blue shaded square fðρL; ρRÞjρmax

2 <
ρL < 1; 0 < ρR < ρmax

1 g at the lower right corner of the
phase diagram, the two maximal current phases II and VII
with ρ ¼ ρmax

1 and ρmax
2 coexist in the open system. The

phases are visible on a microscopic level by plotting
particle trajectories, see SM.
Figures 2(a)–2(c) show representative density profiles

of the coexisting phases at randomly chosen times in the
NESS for different L and different reservoir densities
ðρL; ρRÞ in the coexistence region IIþ VII. These profiles
were determined from kinetic Monte Carlo (KMC) simu-
lations by averaging the occupation numbers in a time
window Δt ¼ 5 × 104. They decay from ρmax

2 to ρmax
1 .

Within the interval Δt, the DW occurs at different random
positions, causing the profile to decay over a region larger
than the intrinsic width ξ of the DW. Stationary profiles
obtained from averaging over long times are represented by
the thick blue lines in Figs. 2(a)–2(c). Videos of time-
dependent density profiles are provided in the SM.
In Figs. 2(a) and 2(b), the system size L ¼ 500 is

the same, but the reservoir densities are different, with
(a) ðρL; ρRÞ ¼ ð0.8; 0.3016Þ very close to the boundary to
phase VII [see Fig. 1(c)], and (b) ðρL; ρRÞ ¼ ð0.8; 0.2Þ on
the “symmetry line” ρR ¼ 1 − ρL. While the mean position
of the DW is close to the system’s center in (b), it is shifted
to the right in (a). In Fig. 2(c) the reservoir densities are the
same as in Fig. 2(b), but the system size is eight times
larger, L ¼ 4 × 103. For the larger system size in (c), the
position fluctuations of the DW relative to the system size
become smaller.
To quantify these effects, we have determined the

instantaneous DW position by adding Ng ¼ 40 ghost
particles to the system, which neither interact with them-
selves nor affect the stochastic dynamics of the regular

FIG. 1. (a) Illustration of the open TASEP with repulsive
nearest-neighbor interaction V: Particles are injected with rate
ΓLðn2Þ from the left particle reservoir, ejected with rate ΓRðnL−1Þ
to the right reservoir, and perform unidirectional jumps with rates
Γiðni−1; niþ2Þ (3) inside the system. (b) Current-density relation
for V ¼ 2Vc ¼ 4 lnð3Þ in the closed TASEP. (c) Nonequilibrium
phase diagram following from (b) by applying the extremal
current principle (1). In the yellow-blue shaded square the two
maximum current phases II and VII coexist. The red square,
circle, and line in this area mark reservoir densities, for which
DW dynamics were simulated.
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particles. After each jump of a regular particle, 50% of the
ghost particles are randomly selected. If a selected ghost
particle is on a site occupied (not occupied) by a regular
particle it is moved one site to the right (left). Because of
these dynamics, the ghost particles accumulate at the DW
position, i.e., its instantaneous position xðtÞ is accurately
determined by the mean of the ghost particle positions yj,

xðtÞ ¼ 1

Ng

XNg

j¼1

yjðtÞ: ð4Þ

We set yj ¼ i − ðLþ 1Þ=2 for ghost particle j at site i,
giving xðtÞ ¼ 0 if the DW is at the system’s center.
Histograms of ghost particle positions are shown in the

insets of Figs. 2(a)–2(c), together with density profiles
of the regular particles obtained from averages in shorter
time windows 10−2Δt, in which the DW movement can be
neglected. The standard deviation of the ghost particle

positions is a measure of the DW’s intrinsic width ξ ≃ 4,
demonstrating that the DW is microscopically sharp. This is
reminiscent of the microscopic sharpness of a shock
discontinuity in the open ASEP [43,52,53]. In videos
provided in the SM, we show the stochastic change of
density profiles in time together with the coupled motion of
the ghost particle cloud.
Figure 3 shows the stationary mean DW position hxi

as a function of the system size L for reservoir densities
ðρL ¼ 0.8; ρRÞ along the red line indicated in the coexist-
ence region IIþ VII of the phase diagram in Fig. 1(c). For
small L, hxi is displaced from the center of the system,
except for ρR ¼ 1 − ρL ¼ 0.2. When ρR approaches ρmax

1 ,
the displacement increases at fixed L. This can be explained
by the fact that when ρR crosses ρmax

1 (at fixed ρL ¼ 0.8),
the NESS becomes the maximal current phase VII with
ρB ¼ ρmax

2 . Phase II is thus increasingly expelled from the
system as ρR approaches ρmax

1 . However, when increasing L
at fixed ðρL; ρRÞ, the displacement of the mean DW
position from the center decreases and approaches zero
for large L. This means that the displacement indicated in
Fig. 2(a) is a finite-size effect.
We now analyze the stationary fluctuations of the DW

position for ðρL; ρRÞ ¼ ð0.8; 0.2Þ, where hxi ¼ 0 for all L.
To this end we define the width of these fluctuations by
the standard deviation of the displacement of the instanta-
neous DW position xðtÞ from the mean position x̄ðtÞ ¼P

t
t0¼0

xðt0Þ=ðtþ 1Þ after time t,

wðt; LÞ ¼
�

1

ðtþ 1Þ
Xt

t0¼0

½xðt0Þ − x̄ðt0Þ�2
�1=2

: ð5Þ

Figure 4(a) shows wðt; LÞ as a function of time for
various L. At small t, wðt; LÞ ∼ t1=3 independent of L,
while for large times, w saturates at a value wsat ∼ L3=4.
When plotting the data in scaled form according to Eq. (2),
they collapse onto one master curve, see Fig. 4(b).

FIG. 2. Simulated density profiles in the coexistence region
IIþ VII at randomly selected times (thin solid lines) for
(a) ðρL;ρRÞ¼ð0.8;0.3016Þ and L¼500, (b) ðρL;ρRÞ ¼
ð0.8;0.2Þ and L ¼ 500, and (c) ðρL; ρRÞ ¼ ð0.8; 0.2Þ and
L ¼ 4000. The thick blue lines mark the long-time averaged
densities. The dashed vertical lines in (a) indicate the displace-
ment hxi of the mean DW position from the center. The dash-
dotted vertical lines in (b) and (c) indicate the standard deviation
�wsat=L of the saturated DW position fluctuations around the
center. The insets show two short-time averages of the fluctuating
particle density (noisy green and olive curves), as well as
histograms of the distribution of ghost particle positions. Their
mean value marks the microscopic position of the DW (dashed
vertical lines).

FIG. 3. Mean DW position hxi as a function of L for fixed
ρL ¼ 0.8 and various ρR corresponding to points on the red
dashed line shown in the coexisting region IIþ VII in Fig. 1(c).
For large L, hxi → 0, demonstrating that the displacement hxi=L
in Fig. 2(a) is a finite size effect.
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We now provide a description of the stochastic domain
wall motion based on theories for kinematic waves [54],
and for current correlations and density profiles in the
NESS of DLGs [48,55]. As a consequence of particle
number conservation, the velocity of a shock front is
v ¼ ½jðρ2Þ − jðρ1Þ�=ðρ2 − ρ1Þ, where ρ2 (ρ1) are the par-
ticle densities before (after) the shock front. Applying this
law to particle densities ρ�ðxÞ ≃ ρðx� ξÞ and fluctuating
currents jBðρ�ðxÞÞ þ δj�ðtÞ right and left of the DW, we
can write

dx
dt

¼ jBðρ−ðxÞÞ − jBðρþðxÞÞ þ δjðtÞ
ρ−ðxÞ − ρþðxÞ

≃
δjðtÞ

ρmax
2 − ρmax

1

: ð6Þ

Here we have set ρ−ðxÞ ≃ ρmax
2 , ρþðxÞ ≃ ρmax

1 , and
δjðtÞ ¼ δj−ðtÞ − δjþðtÞ.
The scaling of correlation functions between occupation

numbers in the NESS of DLGs falls into the KPZ
universality class, which implies that current fluctuations
are long-range anticorrelated. Their autocorrelation func-
tion decays as

CðtÞ ¼ hδjðtÞδjð0Þi ∼ −t−4=3 ð7Þ

at long times, and the integral over CðtÞ vanishes [55].
These two properties of CðtÞ lead to the subdiffusive t1=3

scaling of wðt; LÞ, see Eq. (S11) in the SM.
As for the weak pinning of the DW, we argue that it is

caused by the tendency of the density profiles left and
right from the DW to match profiles of the corresponding
maximal current phases. The functional form of these
matching profiles is universal and decays as a power law
∼1=

ffiffi
l

p
with the distance l from the boundary [36,48].

Thus, close to x ¼ 0 the mean densities left and right of the

DW are slightly different from ρmax
2 and ρmax

1 , and their
gradients give rise to a restoring force of the DW position
towards x ¼ 0. As these gradients are very small and
decrease with L, a linear approximation δρðxÞ ¼ δρ0ð0Þx
should be appropriate. This suggests that the restoring force
is linear with a strength decreasing with L. We hence write

dx
dt

¼ −κðLÞxþ ηðtÞ; ð8Þ

where κðLÞ → 0 for L → ∞, and ηðtÞ is a stationary
Gaussian process with zero mean and autocorrelation
function CðtÞ with R∞

0 dtCðtÞ ¼ 0 and asymptotic behavior
CðtÞ ∼ −C∞ðrtÞ−4=3 for t → ∞; C∞ > 0 is a constant and
r−1 a microscopic timescale (e.g., the inverse attempt
frequency ν−1 ¼ 1 in the TASEP model).
Equation (8) describes an Ornstein-Uhlenbeck process

with long-range anticorrelated noise. As shown in the SM,
it holds w2

sat ¼ C̃ðκÞ=κ, where C̃ðκÞ is the Laplace trans-
form of CðtÞ, with the asymptotic behavior C̃ðκÞ ∼ κ1=3

for κ → 0 [see Eqs. (S12) and (S13)]. Accordingly,
wsat ∼ κðLÞ−1=3. With wsat ∼ L3=4 from the simulations,
we conclude

κðLÞ ∼ κ0L−9=4 ð9Þ

for large L, where κ0 > 0 is a constant. This shows that the
nonflatness of the density profiles in extremal current
phases gives rise to the characteristic timescale κ−1∼L9=4

in the scaling behavior of wðt; LÞ. A detailed analysis of
Eq. (8) in the SM yields a scaling function fðuÞ, which
behaves as fðuÞ ∼ 3C1=2

∞ r−2=3u1=3 for u ≪ 1 and fðuÞ ∼
const ¼ ½3Γð2

3
ÞC∞�1=2r−2=3κ−1=30 for u ≫ 1 [Γð:Þ is the

Gamma function]. The simulated data can be well fitted
by this model, see the solid lines in Fig. 4.
We have verified also the linear restoring force by

determining the drift coefficient D1 ¼ h½xðtþ τÞ −
xðtÞ�jxðtÞ ¼ xi=τ in simulations, see SM. As the DW is
well defined only on a coarse-grained timescale, we cannot
take the limit τ → 0 and have analyzed D1 for different
τ [56]. For the Ornstein-Uhlenbeck process in Eq. (8),
D1 ¼ D1ðx; L; τÞ ¼ −xð1 − e−κτÞ=τ with κ ¼ κ0=L9=4.
Our simulation results are in agreement with this predic-
tion, but with a κ depending on τ, approaching a constant
∝ L−9=4 for large τ. This means that Eq. (8) does not
provide a complete description of the DW dynamics. We
believe that memory effects need to be included in the
restoring process in Eq. (8).
In summary, we have shown for the TASEP with

repulsive nearest-neighbor interaction that the DW sepa-
rating extremal current phases is microscopically sharp
and exhibits surprisingly rich stochastic dynamics. A
subdiffusive growth of the variance of the DW position
arises from anticorrelated current fluctuations. At large

FIG. 4. (a) Width wðt; LÞ of DW position fluctuations [see
Eq. (5)] as a function of time for various system sizes L.
(b) Scaled width wðt; LÞ=L3=4 as a function of scaled time
t=L9=4 demonstrating the scaling law (2). The legend in (b) ap-
plies to (a) also. Solid lines indicate the results from the Ornstein-
Uhlenbeck process given by Eq. (8) with parameters κ0 ¼ 1.133
and C∞ ¼ 0.0225.

PHYSICAL REVIEW LETTERS 132, 167101 (2024)

167101-4



times t ≫ κðLÞ−1 ∼ L9=4 the DW becomes weakly pinned
in a region increasing sublinearly with the system size.
Because these phenomena occur on large time and length

scales, they are independent of microscopic details and
therefore expected to hold true in general for driven diffusive
systems with short-range particle interactions. A necessary
condition for coexistence of extremal current phases is a bulk
current-density relation exhibiting local maxima (minima) of
the same value, and no higher maximum (lower minimum)
lying in between them. The DW dynamics between such
phases reflect power law decays of current correlations and
density profiles. Their investigation can thus be used as a
dynamical probe for analyzing these pertinent features of
driven diffusive systems.
We interpret the weak pinning by the tendency of the

density profiles left and right of the DW to match their
preferred shapes. On the macroscopic scale, i.e., by
rescaling the lattice by 1=L, the density profile has two
constant segments of densities ρmax

2 and ρmax
1 , respectively.

The DW marking the transition point from ρmax
2 to ρmax

1

becomes sharp and corresponds to a so-called contact
discontinuity [57]. In contrast to the microscopically
well-understood shock discontinuities appearing in the
ASEP on the coexistence line, see, e.g., [52,58–61], little
is known about the microscopic structure of contact
discontinuities in DLGs. Our findings constitute a first
step towards their systematic exploration.
A puzzling question is how the dynamical exponent 9=4

for the crossover time arises. It seems that the present
understanding of dynamical critical phenomena in driven
diffusion systems is not yet complete.
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