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Abstract
We consider a Markovian model for the kinetics of RNA Polymerase (RNAP) which provides a
physical explanation for the phenomenon of cooperative pushing during transcription elongation
observed in biochemical experiments on Escherichia coli and yeast RNAP. To study how
backtracking of RNAP affects cooperative pushing we incorporate into this model backward
(upstream) RNAP moves. With a rigorous mathematical treatment of the model we derive
conditions on the mutual static and kinetic interactions between RNAP under which backtracking
preserves cooperative pushing. This is achieved by exact computation of several key properties in
the steady state of this model, including the distribution of headway between two RNAP along the
DNA template and the average RNAP velocity and flux.

1. Introduction

RNA polymerase (RNAP) is an enzyme that func-
tions as a molecular motor responsible for transcrib-
ing the genetic information encoded in the DNA base
pair sequence into RNA [1]. The transcription pro-
cess unfolds in three distinct phases: initiation, elong-
ation, and termination. At initiation RNAP binds to a
specific region on the DNA called promoter sequence
and starts separating the two strands of theDNA, thus
creating the conditions for the onset of transcription
elongation: After forming the transcription elonga-
tion complex (TEC), the RNAP proceeds along the
DNA base pairs. Within this complex, the enzyme
polymerizes the monomeric subunits of an RNA by
adding nucleotides in accordance with the corres-
ponding sequence on the DNA template. Each elong-
ation step involves a catalytic mechanism encom-
passing several key stages, including as elaborated in
[2–4], (1) binding of nucleoside triphosphate (NTP),
(2) hydrolysis of NTP, (3) release of pyrophosphate
(PPi) as a product of hydrolysis, and (4) concurrent
forwardmovement of RNAP along the DNA template
by one base pair, called translocation. Termination
marks the conclusion of the transcription elongation

process, occurring when the TEC encounters a spe-
cific termination sequence and the RNAP detaches
from the template DNA.

A model for the kinetics of translocation must
take into account that thermal noise and other factors
such as sufficient supply of NTP introduce random-
ness into the amount of time that is necessary to com-
plete the mechanochemical cycle involved in a trans-
location step. Also,many RNAPmove simultaneously
on the same promoter sequence, so that one cannot
ignore their mutual interactions. In particular, due to
steric hindrance they cannot occupy the same region
on the DNA template which is incorporated in most
modeling approaches to molecular motor traffic as a
hard core repulsion [5–11]. It is remarkable that with
this steric excluded volume interaction alone, one can
successfully capture the appearance of RNAP ‘traffic
jams’ which is a collective phenomenon that occurs
when a pausing RNAP prevents a trailing RNAP from
moving forward and thus leads to a reduction of
the average flux of RNAP along the DNA and con-
sequently decreases the rate of elongation. Using the
asymmetric simple exclusion process (ASEP) [12–14]
as a prototypical model for molecular motors [5]
this has been demonstrated in the context of protein
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synthesis by ribosomes in [15, 16] and more rigor-
ously and in considerable detail from a mathematical
perspective in [17–22].

However, as empirically demonstrated both
in vitro and in vivo already some time ago for E.
coli [23–25] and for yeast [26], interactions between
RNAP may also be cooperative and lead to an
enhancement of the rate of elongation. This has been
argued to originate in a process where trailing RNAP
‘pushes’ the leading RNAP out of pause sites [27–
29]. To account for this mechanism in stochastic
models of transcription elongation, RNAP interac-
tions more complex than just excluded volume due
to steric hindrance need to be considered.

Belitsky and Schütz in [30, 31] introduced such
a model of RNAP interactions which predicts con-
ditions under which either jamming or cooperative
pushing arise. This model is a generalization of the
ASEP [12–14], originally introduced in the seminal
work [15] on the kinetics of protein synthesis by
ribosomes and since then widely used as a starting
point for modelling many different kinds of molecu-
lar motors [5]. The generalized ASEP first intro-
duced in [30] augments the original ASEP with a
next-nearest interaction and with an internal degree
of freedom to account in the spirit of [32] for the
mechanochemical cycle that RNAP undergoes dur-
ing transcription elongation. The transition rates for
translocation in this model depend on the presence
of nearby RNAP to account for both blocking and
pushing.

It should be stressed that on the microscopic
level of interactions between individual RNAP these
configuration-dependent rates describe the mutual
interactions of blocking and pushing between neigh-
boring RNAPs in an explicit way detailed below, while
on themacroscopic empirical level studied in the bio-
chemical experiments [23–26], those rates lead in an
intricate way to the competing collective phenom-
ena of jamming and cooperative pushing. Shedding
light on the emergence of these phenomena requires
a detailed mathematical analysis of the macroscopic
properties of the microscopic model that is difficult
to achieve by commonly used numerical simulations
or analytic approximation schemes such asmean field
theories.

Such a mathematical analysis is possible for the
model of [30] which is an exclusion process with
short-range interactions in addition to pure excluded
volume interaction. Studying the stationary distribu-
tion has revealed that an enhancement of the rate of
elongation cannot be explained by the mere exist-
ence of microscopic pushing between RNAP. For
cooperative pushing in macroscopic to emerge, suf-
ficiently strong repulsive interactions in addition to
excluded volume interaction which are reflected in
pushing above a certain critical strength are necessary.
However, given the complexity of the mechanochem-
ical translocation step that is only very partially taken

into account in [30] this deeper insight into cooper-
ative pushing is not yet fully satisfactory. The robust-
ness of the argument for a minimal critical pushing
strength and how pushing competes with potentially
opposing forces still need to be probed.

Indeed, a drawback of the model of [30] is the
feature of purely unidirectional motion of RNAP
along the DNA template. This simplification does not
capture backtracking, i.e. a backward jump of the
RNAP during transcription [33, 34]. This may hap-
pen when the polymerase tries to incorporate a non-
cognate NTP and plays a role in error correction to
enhance transcription fidelity [35]. Despite a gener-
ically small error rate [36, 37] error correction is an
important process since a single mutated RNA tran-
script can have a large effect. Since backtracking is
an upstream movement of RNAP against the mean
forward (downstream) flow due to translocation, one
might wonder whether backtracking would not only
reduce the rate of RNA polymerization but also over-
come the effect of pushing between individual RNAP
and thus prevent the emergence of cooperative push-
ing, i.e. the boosting of the efficiency of transcription
by pushing of stalled RNAP.

Backtracking has been investigated not only as
error correction mechanism but in some detail in
[27] on a molecular level, showing that transloca-
tion of RNAP might occur through a power stroke.
A recent study based on a different exclusion pro-
cess with configuration dependent rates investigated
the interplay of pushing and backtracking [38]. The
microscopic dynamics of thatmodel, which was stud-
ied analytically using a mean-field approximation,
bias the system tomake the incorporation of noncog-
nate nucleotides more likely. Here we address the role
of backtracking in cooperative pushing by extending
the model of [30, 31] to include backward transloca-
tion in a way that maintains the rigorous mathemat-
ical tractability. As an advantage of this approach we
note that one can still calculate exact stationary bulk
properties of the kinetics of transcription elongation
of this more sophisticated exclusion model, without
any uncontrolled approximation like mean field the-
ory and thus explore quantitatively how macroscopic
stationary properties arise from kinetic interactions
between single RNAP that are encoded in the micro-
scopic transition rates.

In particular, one can compute how in the pres-
ence of backtracking the flux of RNAP along the DNA
template depends on the density of RNAP and the
strength of interactions between them, which is the
purpose of the present work. The focus is on the
important role of collisions between RNAP during
transcription elongation, reviewed recently in [29]. It
is not intended to provide a comprehensive analysis
of all microscopic mechanisms of backtracking and
translocation that occur during transcription elong-
ation but to highlight the role of the backtracking
that arises from the reversemechanochemical process
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associatedwith themain process of translocation. The
regulation of theRNAPdensity by the kinetics of initi-
ation, termination [15, 39, 40], and bulk factors such
as bulk attachment and detachment of RNAP [41–
44], or defects [45–49] is not considered.We also neg-
lect interactions between RNAP that may arise from
DNA supercoiling [50]. Such interactions would lead
to long-range interactions along the template which
is out of the scope of the present framework. We
onlymention that exclusion processes with nontrivial
exactly solvable stationary distributions and long-
range interactions may be constructed along the lines
described in [51]. Notice that although we treat a par-
ticular backtracking mechanism separately, we aim,
in future work, at a unified treatment of such mod-
els, via the exact mathematical consistency approach
used in [30, 31] and in the present paper.

To facilitate the distinction between microscopic
processes involving interactions between individual
RNAP and the collective macroscopic result of these
interactions that can be observed in biochemical
experiments e.g. in terms of the rate of elongation,
and understand how the interplay of microscopic
processes generate collective behaviour we shall from
now on refer to blocking and pushing when refering to
microscopic forces acting on RNAP and to jamming
and boosting when discussing the resulting collective
phenomena of a reduction or enhancement respect-
ively of the flux of RNAP along the DNA template
and thus to a corresponding change in the rate of
elongation.

The paper is organized as follows. In the fol-
lowing section, we present the mathematical setting
of our model. We begin by defining the state space
of RNAP configurations allowed in the framework
of the model and an exposition of the microscopic
model dynamics (section 2.1). In section 2.2 we intro-
duce the stationary distribution of the model and
present the central mathematical result of this work.
In section 3, we explore various stationary proper-
ties of the model, including the RNAP headway dis-
tribution, average excess, and the average elongation
rate in terms of the stationary RNAP flux and discuss
the impact of backtracking on these quantities. In the
concluding section, we provide a concise summary of
our findings and present some open problems that are
triggered by the present results.

2. Methods

The basic idea of our consistency approach is to intro-
duce a generalized Isingmeasure in a parametric form
and determine transition rates such that this meas-
ure is stationary. The transitions that occur with these
rates are chosen to mimick the translocation process
of RNAP. This approach involves a series of steps. (i)
We envisage the DNA template as a one-dimensional
lattice with a length of L, where individual lattice sites
are numbered from1 to L. RNAPs are depicted as rods

covering lrod consecutive sites, reflecting the phys-
ical reality where each RNAP covers lrod nucleotides
[15, 52–56]. (ii) We propose a stationary distribu-
tion with static interactions as in [30] that take into
account static interactions between these rods, viz.,
excluded volume interaction like in the ASEP and a
short-range interaction with the nearest RNAP on the
lattice, leading to phenomena beyondwhat the simple
exclusion process can demonstrate.Weak logarithmic
long-range interactions of entropic origin [57–60] are
neglected. (iii) Following [32] we define the chem-
ical cycle that an RNAP undergoes in each transloca-
tion step in a reduced fashion in terms of transition
rates between two states in which each RNAP may
exist. (iv) We postulate the transition rates govern-
ing the motion of the RNAP along the DNA template
which describe kinetic interactions that reflect the
static excluded volume and nearest neighbor interac-
tions. For these we derive a consistency condition that
ensures that the envisioned distribution is indeed sta-
tionary for the dynamics specified by those rates.

2.1. Mathematical modelling of the process
As mentioned above, we represent the DNA template
as a one-dimensional lattice with a length L in units of
a step length of δ≈ 0.34 nm determined by the size of
single base pair. In our approach, we do not differen-
tiate between RNAP and TEC, even in the presence
of the intricate TEC structure. Instead, we simplify
the TEC by modeling it as a hard rod with a defined
length denoted as lrod. This parameter represents the
extent of nucleotides covered by an RNAP. In a scen-
ario with N RNAPs on the lattice, they are consecut-
ively labeled by integers, with i ranging from 1 to N.
Specifying the position ki of an RNAP on the lattice
then only requires knowledge of the position of the
leftmost nucleotide it covers, which we refer to the
position of the RNAP. Due to excluded volume inter-
action, no lattice site can be simultaneously covered
by more than one RNAP. Furthermore, to account
for the mechanochemical cycle we allow for RNAP
to occur in two distinct polymerization states: one
without PPi bound (state 1) and the other with PPi

bound (state 2).
Once RNAP has released PPi, it can advance along

the DNA template by a single base pair, equivalent
to a step length 1 on the lattice. In terms of our lat-
tice model, this translocation thus implies that an
RNAP positioned at location ki in state 1 can progress
one site forward, shifting from ki to ki + 1, provided
that the site ki + lrod is unoccupied. Conversely, the
RNAP can move in reverse, leading to the depoly-
merization of RNA from its position at ki to ki − 1,
provided that the site ki − 1 is vacant. This backtrack-
ing occurs only when the RNAP is in state 2, indicat-
ing that PPi is bound to it. Therefore, the presence and
status of RNAPs along the same DNA segment can be
described at any moment of time by their positions
and states. Thermal noise, availability of NTP and
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Figure 1. An allowed configuration on a ring with
L= 20,N= 5, lrod = 3. Black rods are in state 1 and
blank rods are in state 2.

other molecules required for these processes to hap-
pen leads to a translocation dynamics of individual
RNAP that is subject to randomness. To define the
stochastic mathematical model for this random pro-
cess we refer to rods rather than RNAP and to the lat-
tice rather than DNA template.

2.1.1. Rod configurations
Wedefine a complete configuration of rods on the lat-
tice, denoted as η, by using the set of positions ki ∈
{1,2, . . . ,L} and corresponding states αi ∈ {1,2} of
the rods. It is important to note that if ki represents the
position of a rod, then ki + lrod − 1 represents the lat-
tice position of the ‘front’ edge of the rodwhich below
we refer to as the right edge of the rod, as opposed
to the left edge at site ki, which corresponds to the
back edge of the rod. In an allowed configuration the
ordering condition ki+1 ⩾ ki + lrod must be satisfied
due to the excluded volume rule. This constraint is
expressed as ki+1 ⩾ ki + lrod and we say that two rods
i and i+ 1 are neighbors when the right end of rod i
and the left edge of rod i+ 1 occupy neighboring lat-
tice sites, i.e. when ki+1 = ki + lrod. Since we are inter-
ested only in the elongation stage of transcription, we
take a lattice of L sites with periodic boundary condi-
tions, see figure 1.

2.1.2. Transition rates for the mechanochemical cycle
The rate at which the forward step, i.e. translocation,
of rod i occurs is denoted as ri(η). The rate of the
backwardmovement. i.e. backtracking, is represented
as ℓi(η). Additionally, we denote the rate of PPi release
as ai(η) and the rate of PPi binding as di(η). This
minimal reaction scheme aligns with the description
found in [3, 30, 32] for a single RNAP and is illus-
trated in figure 2.

Let η be an allowed configuration with the
coordinate vector k= (k1, . . . ,kN) and state vector
α= (α1, . . . ,αN). The above-mentioned rates are

Figure 2.Minimal scheme of the mechano-chemical cycle
of an RNAP. The RNAP without PPi bounds to it is in state
1 and with PPi is in state 2. The integer subscript k labels
the position of the RNAP on the DNA template. Within
this scheme, the ith RNAP, situated in state 1 at position k
and denoted as 1k, possesses the ability to move from base
pair k to k+ 1. This translocation is contingent on the
current system configuration and is quantified by the
configuration-dependent rate ri(η). However, the
subsequent translocation step for the RNAP can only occur
following the release of PPi, a process governed by a rate
that is denoted as ai(η). This transition leads the RNAP
from state 2k+1 to state 1k+1. In the event that the RNAP is
positioned at base pair k+ 1 and in state 2k+1, it can move
back to base pair k through the depolymerization of RNA.
This backward movement is associated with a rate
represented as ℓi(η), resulting in a transition from state
2k+1 to state 1k. Finally, the association of PPi is
accompanied by a rate di(η), enabling the transition from
state 1k+1 to state 2k+1.

of the form

ri (η) = rδαi,1

(
1+ r⋆

→• δki−1+lrod,ki

+r
→• ◦⋆δki+lrod+1,ki+1

)(
1− δki+lrod,ki+1

)
, (1)

ℓi (η) = ℓδαi,2

(
1+ ℓ⋆◦

←• δki−1+lrod+1,ki

+ℓ
←• ⋆δki+lrod,ki+1

)(
1− δki−1+lrod,ki

)
, (2)

ai (η) = aδαi,2

[
1+ a⋆•δki−1+lrod,ki + a•⋆δki+lrod,ki+1

+a⋆•⋆δki−1+lrod,kiδki+lrod,ki+1

+a⋆◦•
(
1− δki−1+lrod,ki

)
δki−1+lrod+1,ki

+a•◦⋆
(
1− δki+lrod,ki+1

)
δki+lrod+1,ki+1

]
, (3)

di (η) = dδαi,1

[
1+ d⋆•δki−1+lrod,ki + d•⋆δki+lrod,ki+1

+d⋆•⋆δki−1+lrod,kiδki+lrod,ki+1

+d⋆◦•
(
1− δki−1+lrod,ki

)
δki−1+lrod+1,ki

+d•◦⋆
(
1− δki+lrod,ki+1

)
δki+lrod+1,ki+1

]
. (4)

In this setting, the transitions are contingent on the
configuration as given by the Kronecker-δ factors,
and their rates depend on 16 parameters all of which
describe the kinetic interactions between neighboring
RNAPs. The notation for the rates and kinetic inter-
action parameters is chosen as follows.

- The subscript i on the rates refers to the rod
with label i at position ki in state αi in the
configuration η.
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Figure 3. Some translocation rates ri(η) for a rod in state 1. In these visual representations, black rods are depicted in state 1,
while blank rods are shown in state 2.

- The parameters r, ℓ,a,d are rates in units of
seconds. They would be the transition rates of the
rods if only excluded volume interaction was taken
into account. Hence we call them bare rates.

- The parameters with superscripts are dimension-
less numbers that describe the kinetic interactions
by multiplying the bare rates in a way that depends
on the location ki±1 of the neighboring rods i± 1
as determined by the Kronecker-δ factors. We call
these quantities kinetic interaction parameters.

- The quantities denoted by r, r⋆
→• , r

→• ◦⋆ determine
the jump rates to the right (translocation).

- The quantities denoted by ℓ,ℓ⋆◦
←• , ℓ

←• ⋆ determine
the jump rates to the left (backtracking).

- The quantities denoted by a,a⋆•,a•⋆,a⋆•⋆,a⋆◦•,
a•◦⋆ determine the release rates of PPi.

- The quantities denoted by d,d⋆•,d•⋆,d⋆•⋆,d⋆◦•,
d•◦⋆ determine the binding rates of PPi.

- The superscript • refers to rod i and an arrow above
it indicates the jump direction.

- The superscript ⋆ refers to a neighboring rod i± 1
and is placed to the right of • for kinetic interac-
tions with the right neighboring rod i+ 1 and to
the left of • for kinetic interactions with the left
neighboring rod i− 1 or on both sides for kinetic
interactions influenced by both neighbors.

- The superscript ◦ refers to one empty site next to
rod i and is placed to the right (left) of • for one
empty site to the right (left) of rod i.

- In the absence of the superscript ◦ the next rod
i± 1 indicated by ⋆ in the superscript to the right
or left of • is on a nearest neighbor site (without
an empty site in between) while the presence the
superscript ◦ there is one empty site between rod
i and rod i± 1, and we say that rod i± 1 is on a
next-nearest neighbor site.

In figures 3 and 4 some of these transitions are
illustrated, with figures 3(a)–(d) showing how the
rate of translocation depends on the presence rods
on neighboring sites , and figures 4(a)–(d) displaying
various transitions between states 1 and 2.

The excluded volume interaction is taken into
account by the overall factors (1− δki+lrod,ki+1) and

(1− δki−1+lrod,ki) in the rates for translocation and
backtracking which forbid jumps onto an occupied
site, corresponding to blocking. Below we indicate
this by defining hypothetical interaction paramet-

ers r
→• ⋆ = ℓ⋆

←• =−1 for jumps onto occupied sites
that would violate the exclusion rule. The factors
δki−1+lrod+1,ki capture the kinetic next-nearest neigh-
bor interaction. The overall factors δαi,β ensure that
the transitions between the chemical states 1 and 2
occur as described by the simplified mechanochem-
ical cycle we consider in this work.

2.1.3. Choice of rates and kinetic interaction range
2.1.3.1. Bare rates
In the setting of Wang et al [3] the bare rates a, r, ℓ,
and d take the values

r= [NTP](µM)
−1 s−1, ℓ= 0.21s−1,

a= 31.4s−1, d= [PPi](µM)
−1 s−1. (5)

Here [NTP] and [PPi] are the NTP and PPi concen-
trations which following [32] are chosen as [NTP] =
10−3, [PPi] = 10−5. We stress that is not the purpose
of this study to predict elongation rates for any con-
crete biological process but to study how interactions
between RNAP affect the elongation rate qualitat-
ively. Hence we adopt these specific empirical para-
meters as reference constants throughout this work.

2.1.3.2. Kinetic interaction parameters
We have no empirical data on the kinetic interaction
parameters at our disposal. Hence they are taken as
variables and the main characteristics of the model
are computed for different values of these variables
to explore how the main quantitites depend on these
unknown quantities which, in principle, are measur-
able in experiments. To ensure the positivity of the
rates and ergodicity of the process for all allowed con-
figurations, all interaction rates must be individu-
ally larger than or equal to −1 and in combina-

tion with others satisfy the inequalities r⋆
→• + r

→• ◦⋆ ⩾
−1, ℓ⋆◦

←• + ℓ
←• ⋆ ⩾−1, a⋆• + a•⋆ ⩾−1, a⋆• + a•◦⋆ ⩾

−1, a⋆◦• + a•⋆ ⩾−1, a⋆◦• + a•◦⋆ ⩾−1, a⋆•⋆ ⩾−1.

5



Phys. Biol. 22 (2025) 016001 N P N Ngoc et al

Figure 4. Some binding and release rates ai(η) and di(η). Black rods represent RNAP in state 1, while the blank rods signify
RNAP in state 2 (with PPi bound to it).

Depending on the sign of the interaction paramet-
ers for translocation they describe kinetic repulsion
or kinetic attraction as follows.

When r⋆
→• > 0 the bare translocation rate r is

increased by the presence of a trailing RNAP which

means RNAP pushing to the right. Similarly, ℓ
←• ⋆ > 0

increases the bare backtracking rate ℓ in the pres-
ence of a neighboring RNAP upstream, which means
RNAP pushing to the left. As mentioned in the
introduction, we refer these processes, which corres-
pond to a kinetic repulsion, as pushing, as opposed
to the boosting (i.e. cooperative pushing) reported
for the biochemical experiments [23–26]. We stress
once more that as shown in [30], RNAP pushing on
the level of individual RNAP does not automatically
imply boosting.

When r
→• ◦⋆ < 0 the bare translocation rate r is

reduced by the presence of a next-nearest neighbor
upstream RNAP. We refer to this effect as blocking
enhancement as it corresponds to a kinetic repulsion
that is of longer interaction range, but less strong than
the full suppression of translocation in the presence
nearest neighbor upstream RNAP due to excluded

volume interaction. Similarly, ℓ⋆◦
←• < 0 corresponds

to repulsive blocking enhancement for backtracking.
We recall that blocking does not necessarily imply
jamming.

On the contrary, when r⋆
→• < 0 then the bare

translocation rate r is reduced by the presence of a
trailing nearest neighbor RNAP, and similarly when

ℓ
←• ⋆ < 0 then the bare backtracking rate ℓ decreases
due to the presence of a nearest neighbor upstream
RNAP. These effects may be described as ‘clinging’,

corresponding a kinetic attraction. Also r
→• ◦⋆ > 0 and

ℓ⋆◦
←• > 0 describe a formof kinetic attraction due to a

‘pulling’ by a next-nearest neighbor RNAP upstream
in case of translocation or downstream in case of
backtracking.

2.1.3.3. Interaction range

Notice that for r
→• ◦⋆ = ℓ⋆◦

←• = 0 the transition rates
depend only on whether the nearest neighbor site
if rod i is occupied by another rod via excluded
volume interaction and the through the interaction

parameters r⋆
→• , ℓ

←• ⋆, as opposed to r
→• ◦⋆ ̸= 0 or

ℓ⋆◦
←• ̸= 0 when the transition rates depend also on

occupation of the next-nearest neighbor site. We

call the simplified scenario r
→• ◦⋆ = ℓ⋆◦

←• = 0minimal
interaction range while otherwise speak of extended
interaction range.

We summarize the role of the interaction terms in
itemized form

• Kinetic repulsion:
r
→
• ⋆ = ℓ⋆

←
• =−1 (Blocking)

r
→
• ◦⋆ < 0, ℓ⋆◦

←
• < 0 (Blocking enhancement)

r⋆
→
• > 0, ℓ

←
• ⋆ > 0 (Pushing)

(6)

• Kinetic attraction:{
r⋆
→
• < 0, ℓ

←
• ⋆ < 0 (Clinging)

r
→
• ◦⋆ > 0, ℓ⋆◦

←
• > 0 (Pulling).

(7)

Kinetic repulsion allows for repulsive forces that
reach further than the on-site steric excluded volume
interaction implemented by taking r

→• ⋆ = ℓ⋆
←• =

−1. Kinetic attraction represents a stylized form of
Lennard–Jones forces which are repulsive at very close
distance (blocking due to the steric excluded volume
interaction), attractive at small distance (clinging
and pulling), and eventually absent at larger dis-
tances. By introducing the notions of clinging and
pulling we do not presume that these mechan-
isms exist in any specific process of transcription
elongation. They are features that arise naturally
in the RNAP model studied here and they may or
may not have counterparts in biological systems.
When all interaction parameters are taken to zero
then only excluded volume interaction is taken into
account.

2.1.4. Master equation
In a nutshell, the Markovian microscopic dynamics
unfold as follows. Each rod is associated with four
random Poissonian clocks, labeled as 1, 2, 3, and 4,
each operating with configuration-dependent rates
denoted as ri(η),di(η), ℓi(η) and ai(η), respectively.
When one of these four clocks for rod i activates, the
following scenarios can occur:

6
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• For a rod i in state 1:

− If the clock is 3 or 4, no action takes place.
− If the clock is 1, the rod i advances one site,

provided that the target site ki + lrod is unoc-
cupied. Consequently, the coordinate of the ith
rod changes to ki + 1, and its state instantly
switches to 2.

− If the clock is 2, the position of the rod remains
unchanged, but its state transitions to 2.

• For a rod i in state 2:

− If the clock is 1 or 2, there is no effect.
− If the clock is 3, the rod i moves backward by

one site, contingent on the target site ki − 1
being unoccupied. Consequently, the coordin-
ate of the ith rod becomes ki − 1, and its state
promptly shifts to 1.

− If the clock is 4, the position of the rod remains
unchanged, but its state changes to 1.

With this definition themaster equation for the prob-
ability Pt(η) of finding the rods at time t in the con-
figuration η is as follows

d
dt
P(η, t) =

N∑
i=1

[
ri
(
ηi
tlf

)
P
(
ηi
tlf, t

)
+ ℓi

(
ηi
tlb

)
P
(
ηi
tlb, t

)
+ ai

(
ηi
rel

)
P
(
ηi
rel, t

)
+ di

(
ηi
bin

)
P
(
ηi
bin, t

)
− (ri (η)+ ℓi (η)+ ai (η)+ di (η))P(η, t)

]
(8)

where ηi
tlf is the configuration that leads to η before a

forward translocation of RNAP i (i.e. with coordinate
ktlfi = ki − 1 and state αtlf

i = 3−αi), ηi
tlb is the config-

uration that leads to η before a backward transloca-
tion of RNAP i (i.e. ktlbi = ki + 1,αtlb

i = 3−αi), ηi
rel

is the configuration η before PPi release at RNAP i
(i.e. kreli = ki and αrel

i = 3−αi), and ηi
bin is the con-

figuration leads to η before PPi binding at RNAP i
(i.e. kbini = ki,αbin

i = 3−αi). Notice here that due to
periodicity, the positions ki of the rods are counted
modulo L and labels i are counted modulo N. The
stationary master equation, denoted below by π̂(η),
satisfies (8) with the left hand side taken to be zero.

2.2. Stationary distribution
Following [30, 31] the stationary probability for the
presence of rods at positions k= (k1, . . . ,kN) with
states α= (α1, . . . ,αN) within the configuration η is
expressed as follows:

π̂ (η) =
1

Z
π (η) (9)

where π(η) is the Boltzmann weight which is of the
form

π (η) = exp

[
− 1

kBT
(U(k)+λB(α))

]
. (10)

The quantity T is an effective temperature that is con-
sidered as a constant. The quantity U(k) is the static
short-range interaction energy described by

U(k) = J
N∑

i=1

δLki+1,ki+lrod . (11)

A positive value of J corresponds to repulsive static
interaction between neighboring rods. Here, δL rep-
resents the Kronecker symbol, computed modulo L
due to the presence of periodic boundary conditions.

The quantity

B(α) :=
N∑

i=1

(3− 2αi) = N1 (η)−N2 (η) (12)

signifies the excess in the number Nα(η) of rods
in state α ∈ {1,2} in a configuration η. The chem-
ical potential λ acts as a Lagrange multiplier, which
parametrizes the mean excess and describes the fluc-
tuations of the excess that arises from the interplay
of NTP hydrolysis and PPi release. The partition
function

Z=
∑
η

π (η) (13)

is not needed in explicit form in the computations
below. For the convenience of computation, one
introduces

x= e
2λ
kBT , y= e

J
kBT , (14)

so that x> 1 corresponds to an excess of RNAP in
state 1 and repulsive static interaction corresponds to
y> 1.

To ensure that the process governed by the
dynamics (1)–(4) admits a measure of the form (9) to
be its invariant distribution, a price to pay is that the
parameters of the model must satisfy the three con-
sistency conditions

x=
r+ d

ℓ+ a
(15)

y=
1+ r⋆

→•

1+ r
→• ◦⋆

=
1+ ℓ

←• ⋆

1+ ℓ⋆◦
←•

(16)

relating the parameters of the stationary distribution
to the four bare rates and the four interaction para-
meters for translocation and backtracking and the five
consistency conditions

xaa⋆• − dd⋆• =
1

1+ x
(−r+ xℓ)

− x

1+ x

(
−rr⋆

→• + xℓℓ
←• ⋆
)

(17)

xaa•⋆ − dd•⋆ =
x

1+ x
(−r+ xℓ)

− 1

1+ x

(
−rr⋆

→• + xℓℓ
←• ⋆
)

(18)

xaa⋆•⋆ − dd⋆•⋆ =−rr⋆
→• + xℓℓ

←• ⋆ (19)

7
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xaa⋆◦• − dd⋆◦• =
1

1+ x

(
rr
→• ◦⋆ − xℓℓ⋆◦

←•
)

(20)

xaa•◦⋆ − dd•◦⋆ =
x

1+ x

(
rr
→• ◦⋆ − xℓℓ⋆◦

←•
)
. (21)

Involving the nine interaction parameters for binding
and release of PPi.

This is proved rigorously in appendix and allows
us to present the main mathematical result of the
present work as a formal theorem.

Theorem 2.1. If the parameters appearing in the
rates (1)–(4) satisfy the consistency conditions (15)–
(21), then the invariant measure of the rod process
defined by the master equation (8) is given by

π̂ (η) =
1

Z

(
r+ d

ℓ+ a

)∑N
i=1−3/2+αi

×

(
1+ r⋆

→•

1+ r
→• ◦⋆

)−
∑N

i=1 δ
L
ki+1,ki+lrod

(22)

where Z is the partition function.

Notice that the excess part of the stationary distri-
bution involving the Langrangemultiplyer λ depends
only on the bare transition rates while the static inter-
action part of the stationary distribution involving
the Kronecker-δ terms depends only on the kin-
etic interaction parameters which satisfy the sym-
metry (16). Remarkably, comparing this consistency
condition with the role of the interaction parameters
shows that repulsive kinetic interactions are consistent
only with repulsive static interaction and similarly,
attractive kinetic interactions are consistent only with
attractive static interaction. While this is what one
may expect on physical grounds the consistency con-
ditions (15)–(21) between static and kinetic interac-
tion parameters are not a feature built into the defin-
ition of the model but a purely mathematical result
that comes out in the proof of the theorem. The sig-
nificance of the relations between the parameters of
the stationary distribution and the transition rates are
discussed in the following section.

3. Results and discussion

Given an average density ρ= N/L of rods of the lat-
tice, a central quantity of interest are the statistical
properties of the distance between rods, expressed
in terms of the headway mi which is the number of
empty sites between neighboring rods ith and (i+
1)th. This quantity, apart from its intrinsic interest,
also determines further important properties of the
stationary translocation kinetics, in particular the sta-
tionary flux related to the rate of elongation and the
average excess of bound and unbound RNAP. These
quantities are computed below. It is not surprising
that some formulas in the present work turn out to
be resemble corresponding expressions in [30, 31]
since the Boltzmann factor (9) is of similar form as in

those papers. However, the parameter x in our setting
depends not only on the rates r,a (as in [30]) but also
on the rates ℓ,d. Moreover, the value y in this work is
also different from the one in [30] since it depends

on the parameters r⋆
→• , r

→• ◦⋆ and ℓ
←• ⋆, ℓ⋆◦

←• charac-
terizing translocation and backtracking, respectively,
while the same value in [30, 31] depends only the for-
ward translocation.

3.1. Average excess
The simplest measure that characterizes the distribu-
tion of RNAP is the average excess density with no PPi

bound over the PPi bound state of RNAP given by

σ =

⟨
N1
⟩
−
⟨
N2
⟩

L
(23)

where Nα is the number of rods in state α. For a
configuration η with N rods one has by definition
N1(η)+N2(η) = N. With the second equality in the
definition (12) the factorization of the Boltzmann
weight (10) in the invariantmeasure (9) into an inter-
action part and the excess part with the Lagrangemul-
tiplier λ thus yields

σ =
1− x

1+ x
ρ. (24)

We denote by

ρα := ⟨δαi,α⟩=
1

L
⟨Nα⟩ , α ∈ {1,2} , (25)

the average densities of rods in states 1,2. Since ρ1 +
ρ2 = ρ, one gets from (24)

ρ1 =
1

1+ x
ρ, ρ2 =

x

1+ x
ρ. (26)

The prefactors

τ1 :=
1

1+ x
, τ2 :=

x

1+ x
(27)

appearing in the consistency relations for the inter-
action parameters (21) thus play the role of the
fraction of RNAP in states 1 and 2 respectively.
Correspondingly,

x=
ρ2
ρ1

(28)

is the stationary ratio of RNAP in states 1 and
2. According to the consistency relation (15). This
quantity depends only on the bare rates r, ℓ,a,d not
on the interaction parameters.With the empirical val-
ues of r, ℓ,a, d as in (5) one finds x= 31.95.

8
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3.2. Absence of headway correlations
As a first result we note that the headways between
rods are uncorrelated. To prove this we note that due
to translation invariance, an allowed configuration of
RNAPs can be specified by the headway vector m :=
(m1, . . . ,mN) and the state vector α= (α1, . . . ,αN).
Thus, one hasmi = ki+1 − (ki + lrod) mod L and the
total number of vacant sites is M= L− lrodN. We
denote by

θ
p
i := δmi,p = δki+1,ki+lrod+p. (29)

the indicator functions on a headway of length p (in
units of base pair) with the index i taken modulo N,
i.e. θp0 ≡ θ

p
N. In terms of the parameters (14) and the

new distance variables (29) one rewrites the station-
ary distribution (9) as follows

π̃ (ζ) =
1

Z

N∏
i=i

(
x−3/2+αiy−θ0i

)
(30)

where ζ is an allowed configuration defined by state
vectorα and headway vectorm. Notice that themeas-
ure (30) is of factorized form which indicates the
absence of headway correlations.

As in [30, 31], we work in the grand-canonical
ensemble defined by

π̃gc (ζ) =
1

Zgc

N∏
i=1

(
x−3/2+αiy−θ0i zmi

)
, (31)

where Zgc = (Z1Z2)
N with

Z1 =
1+(y− 1)z

y(1− z)
, Z2 = x1/2 + x−1/2, (32)

and the solution of the quadratic equation

(y− 1)z2 + z

(
y
1− (lrod − 1)ρ

1− lrodρ
− 2(y− 1)

)
− 1= 0

(33)

given by

z := z(ρ,y) = 1−
1− (lrod − 1)ρ−

√
(1− (lrod − 1)ρ)2 − 4ρ(1− lrodρ)(1− y−1)

2(1− lrodρ)(1− y−1)
. (34)

Which parametrizes the density of rods. In the
absence of nearest-neighbor static interaction,
i.e. when RNAP only experience excluded volume
interaction, this relation reduces to

z0 := z(ρ,1) =
1− lrodρ

1− (lrod − 1)ρ
. (35)

By definition, for any static interaction strength the
mathematically maximal density of rods is ρmax =
l−1
rod which expresses full coverage of the lattice by
rods. For all y one has z(0,y) = 1⩾ z(ρ,y)⩾ 0=
z(ρmax,y). Hence for rod densities of interest, i.e. ρ ̸=
0,ρmax one has 0< z< 1 and z is strictly monotonic-
ally decreasing in ρ.

3.3. Headway distribution
Since the invariant measure is of the same form as in
[30, 31], mean headway and headway distribution are
the same form as in those papers as functions of the
parameters x,y,z, the difference being the depend-
ence of these parameters on the microscopic trans-
ition rates (15), (16), and the density parameter (34).

Denote by Ph(r) the distribution of the head-
way between the right edge of a trailing rod i
and the left edge of a leading rod i+ 1 which

means Ph(r) =
1

ρ

⟨
δki+1−ki−lrod,r

⟩
= ⟨θri ⟩ , r ∈ N where

N= {0,1,2. . .} are the natural numbers. This distri-
bution depends on the rod density ρ and the interac-
tion parameter y. However, to keep notation light we
omit this dependence. From (31) one finds

Ph (r) =


1− z

1+(y− 1)z
for r= 0,

yPh (0)zr for r⩾ 1
(36)

with the mean headway

λ(ρ) := ⟨mi ⟩=
yz

(1− z)(1+(y− 1)z)
=

1− lrodρ

ρ
(37)

in units of the lattice constant δ given by the size of a
DNA base pair. The mean headway does not depend
on the static interaction strength.

The nearest-neighbor probability

p0 := Ph (0) =
1− z

1+(y− 1)z
(38)

of having headway 0 plays a special role. This is the
probability of finding two rods as nearest neighbors
which determines the mean static interaction energy
density

9
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Figure 5. RNAP headway distribution Ph(r) for different static interaction strengths y as a function of the integer lattice distance
at average RNAP densities ρ= 0.1 and ρ= 0.18. The connecting lines are guides to the eye.

u(ρ,y) :=
1

LJ

∑
k

⟨U(k)⟩= 1

N

N∑
i=1

⟨
θ0i
⟩
= p0 (39)

in units of the interaction constant J.
To examine the impact of the static interaction

strength parametrized by y on the full distribution
we first note that Ph(r) is strictly decreasing for
headways r⩾ 1 independently of interaction strength
and rod density. This is an entropic effect which
indicates that the number of allowed configurations
decreases with the headway between them. However,
the probability p0 of finding two neighboring rods
depends non-trivially on the interplay of interaction
strength and rod density. Since p0 = Ph(1)/(yz) and
since z< 1, any attractive interaction (which corres-
ponds to y< 1) yields p0 > Ph(1) which is indeed
expected for attraction. However, somewhat contrary
to intuition, the probability of finding two rods as
immediate neighbors is smaller than the probabilty
of finding them with an empty site between them
even for repulsive interaction as long as it is not
too strong. Only above a critical repulsive interac-
tion strength that depends on the density through
the relation y> 1/z the next-nearest neighbor head-
way probability Ph(1) exceeds the nearest neighbor
headway probability p0. This effect is demonstrated in
figure 5 for rods of length lrod = 5 for twodifferent rod
densities and three different interaction parameters
y= 0.2 (attractive static interaction), y= 1.0001 (very
weak repulsive interaction), and y= 5 (strong repuls-
ive static interaction). Since backtracking is reduced
when there are many neighboring rods we conclude
that backtracking due to neighbor depletion sets in
for strong repulsive static interactions above the crit-
ical value yc = 1/z.

3.4. Average elongation rate
The main quantity of interest is the average elong-
ation rate which is related to the flux of rods along
the chain. To elucidate the effect of backtracking we
first compute for the mean velocity of a single RNAP
which experiences no interaction with another RNAP

and how it changes qualitatively if we assume a rate
of backtracking ℓ different from the empirical value
reported in [3].

3.4.1. Mean velocity of a single RNAP
For a single rod the process reduces to a biased ran-
domwalk of a particle with an internal degree of free-
dom that is given by the two chemical states ini which
the RNAP can be. Following the approach of Wang
et al [3], one finds by straightforward computation

v0 =
ra− ℓd

r+ ℓ+ a+ d
= rτ1 − ℓτ2 =

r− ℓx

1+ x
. (40)

If an RNAP would perform a simple random walk,
then its velocity would be v0 = r− ℓ which differs

from (40) by the prefactors τ1 =
ρ1
ρ
,τ2 =

ρ2
ρ

which

are the number fraction of the chemical states 1 and
2, respectively. This difference quantifies the effect
of the mechanochemical cycle on the average velo-
city v0 of an RNAP. At low density ρ of RNAP, i.e. in
a scenario when RNAP would almost never become
neighbours on theDNA strand, the RNAP flux is then
given by

j0 = ρv0. (41)

We can also read off the effect of backtracking
on the velocity of a single RNAP. To quantify this
effect we denote by vref0 the hypothetical velocity in
the absence of backtracking (ℓ= 0) and by v0(10) the
velocity for strong backtracking for which we take a
tenfold backtracking rate 10ℓ compared to the empir-
ical rates reported in [3]. This yields the ratios

v0

vref0
= 0.9997,

v0 (10)

vref0

= 0.974. (42)

Hence assuming a complete absence of backtracking
yields no perceptible change in the avarage velocity
of a single RNAP. The reduction of the velocity for
strong backtracking compared to vref0 is small (about
2.6%) even though the backtracking rate has been

10
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taken as 10 times the empirical rate ℓ. This observa-
tion leads us to conclude that the effect of backtrack-
ing on the velocity of single RNAP is, at most, small.

3.4.2. Average velocity
To elucidate how the interplay of backtracking with
the static and kinetic interactions affects the average
elongation rate we investigate the average velocity v
of an RNAP in an ensemble of interacting RNAP, as
opposed to the single RNAP discussed above. The sta-
tionary average flux

j = ρv. (43)

of RNAP along the DNA template is the average num-
ber of RNAP crossing a lattice bond per unit time
(second) [32] is thus a measure of the average elong-
ation rate.

In the framework of our model, j is given by the
expectation of the right and left rod jump rates ri(η),
ℓi(η) with respect to the stationary distribution (9)
through the difference j = ⟨ri − ℓi⟩. From the defini-
tions (1), (2) one has

j =
r

L

⟨
N1

(
1+ r⋆

→• θ0i−1

)(
1− θ0i

)
+ r
→• ◦⋆θ1i

⟩
− ℓ

L

⟨
N2

(
1+ ℓ

←• ⋆θ0i

)(
1− θ0i−1

)
+ ℓ⋆◦

←• θ1i−1

⟩
(44)

where we have used that δki+lrod,ki+1 · δki+lrod+1,ki+1 =
δki−1+lrod,ki · δki−1+lrod+1,ki = 0. The expectation (44)
does not depend on the rod i because of stationarity
and the conservation of the total number of rods dur-
ing translocation.

The factorization property of the stationary dis-
tribution (30) allows for expressing the expectation of
the products appearing in this formula by the product
of expectations involving the stationary headway
probabilities ⟨θ0i ⟩= Ph(0) = p0, ⟨θ1i ⟩= Ph(1) = yzp0
given by (36). The headway distribution (36) and the
consistency relation (16) then yields

j = j0z

[
1+

(
rρ1r⋆

→• − ℓρ2ℓ
←• ⋆

)
(1− z)

y+ 1+(y− 1)z

[1+(y− 1)z]2

]
(45)

v= v0z

[
1+

(
rτ1r⋆

→• − ℓτ2ℓ
←• ⋆

)
(1− z)

y+ 1+(y− 1)z

[1+(y− 1)z]2

]
(46)

in terms the kinetic interaction parameters for
pushing.

To discuss the effect of the microscopic inter-
actions on the collective behaviour of a stationary
ensemble of RNAP in terms of the average RNAP
velocity (46) we define the interaction factor

q :=
v
v0

=
j
j0

= z

[
1+

rτ1r⋆
→
• − ℓτ2ℓ

←
• ⋆

rτ1 − ℓτ2
(1− z)

y+ 1+(y− 1)z

[1+(y− 1)z]2

]
(47)

which quantifies how much the velocity (or flux) is
affected by the presence of RNAP interactions. Notice
that q depends both on the average RNAP dens-
ity ρ an the various rates and interaction paramet-
ers that define the microscopic interactions between
individual RNAP. Thus q characterizes whether the
average velocity of an interacting system of RNAP
is enhanced or reduced compared to a hypothet-
ical system of noninteracting RNAP that is effectively
described by translocation at very low RNAP dens-
ity. We speak of boosting when q> 1 for a range of
RNAP densities and system parameters and of jam-
ming when q< 1.

3.5. Role of backtracking for boosting
To examine the relationship between microscopic
backtracking and the collective behaviour that leads
to boosting we work with the length of RNAP lrod = 5
and use the values of r, ℓ,a, d given in (5) and below.
Kinetic interaction strengths are varied in different
ways and the effect on boosting is discussed for the full
range of rod densities, ranging from 0 to the maximal
rod density 1/ℓ= 0.2

3.5.1. Minimal kinetic interaction range

It is interesting that if r
→• ◦⋆ = ℓ⋆◦

←• = 0 (minimal kin-
etic interaction range), from identity (16) one has

r⋆
→• = ℓ

←• ⋆ = y− 1. Then the average velocity takes
the simple form

v= v0z

(
y

1+(y− 1)z

)2

(48)

where z given by (34) is a function of the RNAP dens-
ity and static interaction strength. Thus the interac-
tion factor (47)

q= z

(
y

1+(y− 1)z

)2

(49)

is a function only of the RNAP density and the inter-
action terms of the model and can be expressed in
terms of the density and the static interaction alone.

The result (48) for the average velocity shows that
backtracking manifests itself through the bare back-
tracking rate ℓ in the overall amplitude v0 given by
the velocity of an isolated RNAP. However, as dis-
cussed above, the effect is so small that curves for dif-
ferent values of ℓwould collapse onto the same curves
shown in figure 6 for ℓ given by (5). Moreover, this
particular effect of backtracking has no impact on
boosting.

To examine backtracking affects on boosting
through the RNAP interactions we first note that by
definition, q= 1 at density ρ= 0. As a function of the
density, the interaction factor has a maximum at a
density ρ∗ given by z= 1/(y− 1) where the derivat-
ive of w.r.t. the density vanishes. Since 0⩽ z< 1, this
can happen only if y> 2 which implies that the velo-
city increases and reaches a maximum v∗ > v0 only

11
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Figure 6. RNAP velocity v and RNAP flux j as functions of RNAP density with r
→• ◦⋆ = ℓ⋆◦

←• = 0 and different static interaction
strengths y. Curves from top to bottom with value of y : 5,2,1.001,0.5. The dotted lines correspond to non-interacting RNAP.

for a sufficiently strong static repulsion given by the
critical value

yc = 2. (50)

Above ρ∗ the interaction factor decreases and boost-
ing disappears at a critical density ρc given by the
nonzero solution of the equation q(ρc,y) = 1. Thus
for y> yc boosting occurs in the density range 0<
ρ < ρc as shown in figure 6. In the high density range
ρc < ρ⩽ 1/lrod jamming takes over.

The same observation was made in [30] in the
absence of backtracking and shows that the emer-
gence of boosting arises by the same interplay between
static interaction and kinetic interactions even when
the interaction parameter ℓ

←• ⋆ for backtracking is as

strong as the interaction parameter r⋆
→• for trans-

location. Thus, in the minimal kinetic interaction
range, only for sufficiently strong static repulsion
y> 2 boosting appears and reaches global maximum
at a density ρ∗, above which the velocity drops from
the maximum to zero at the maximal rod density
0.2. Above the critical static repulsion strength boost-
ing thus occurs for densities between 0 and a critical
density that is close to the maximally possible density
1/lrod. When y is not strong enough (y⩽ 2), the velo-
city is less than the velocity of a single RNAP (dotted
line). See figure 6(a) for these features and figure 6(b)
that shows how the corresponding the average flux
j varies with the density. The interaction factor q is
given by the same curves as in figure 6(a), with res-
caled y-axis where the dotted reference line for non-
interaction RNAP at y= 1.

The interaction parameter ℓ
←• ⋆ = r⋆

→• , related to
both backtracking and translocation, however, has a
significant impact on boosting as it is linked with the
static interaction strength via the consistency relation

ℓ
←• ⋆ = y− 1 which shows that boosting arises if and

only if ℓ
←• ⋆ = r⋆

→• > 1. This means that for boosting
to emerge it is not enough that the RNAP pushing on
the level of individual RNAP, which corresponds to

ℓ
←• ⋆
c = r⋆

→•
c > 0, exists. It has to be sufficiently strong

and exceed the critical value determined by the inter-

action parameter ℓ
←• ⋆
c = r⋆

→•
c = 1. Moreover, when

sufficiently strong it is the RNAP pushing itself that is
important, not its direction. Hence backtracking has
no significant impact on the rate of elongation in the
scenario of minimal kinetic interaction range.

To go beyond the basic minimal interaction
scheme we account in what follows for next-nearest
neighbor interaction (extended kinetic interactions).

3.5.2. Extended kinetic interaction range
The picture changes somewhat for extended kinetic
interaction range. Using the exact expressions (46)
for the average velocity in an ensemble of interacting
RNAP and (40) for a single rod as well as the con-
sistency conditions (16) one finds that the interaction
parameter is larger than 1 in a density range is given
by the inequality

z
1+(y− 1)z+ y

(1+(y− 1)z)2
<

rτ1r⋆
→• − ℓτ2ℓ

←• ⋆

rτ1 − ℓτ2
(51)

relating density (parametrized by z) and the static
interaction parameter y to the bare and nearest-
neighbor backtracking and translocation rates. We
illustrate this inequality for some scenarios.

3.5.2.1. Strong static repulsion
First we consider strong repulsion with y= 5 well
above the critical value for which boosting occurs and
explore two scenarios for backtracking.

(i) We take ℓ⋆◦
←• = 0 which means that the next-

nearest upstream neighbor has no effect on
the rate of RNAP backtracking (no blocking
enhancement for backtracking RNAP). Static

repulsion is then realized by ℓ
←• ⋆ = 4, i.e. push-

ing to the left. In figures 7(a) and (b) it is shown
how boosting changes as blocking enhancement
for translocation is increased. When the block-
ing enhancement for translocation is too strong

12
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Figure 7. RNAP velocity v and RNAP flux j as functions of RNAP density with static interaction strength y= 5 and kinetic

interaction parameter ℓ⋆◦
←• = 0 for different values r

→• ◦⋆. Curves from top to bottom with value of r
→• ◦⋆ : 0,−0.3,

−0.5,−0.8,−0.9. The dotted lines correspond to non-interacting RNAP.

Figure 8. RNAP velocity v and RNAP flux j as functions of RNAP density with static interaction strength y= 5 and kinetic

interaction parameter ℓ⋆◦
←• =−0.9 for different values r

→• ◦⋆. Curves from top to bottom with value of r
→• ◦⋆ : 0,−0.3,

−0.5,−0.8,−0.9. The dotted lines correspond to non-interacting RNAP.

(r
→• ◦⋆ is close to -1), then even strong pushing (y

arbitrarily large) does not lead to boosting.

(ii) For ℓ⋆◦
←• =−0.9 the presence of a next-nearest

upstream neighbor strongly suppresses back-
tracking. For the same choice interaction
parameters for translocation and the same
static repulsion strength. The curves shown in

figures 8(a) and (b) for ℓ⋆◦
←• =−0.9 are nearly

indistinguishable from the curves in figures 7(a)

and 7(b) for ℓ⋆◦
←• = 0. Hence the occurrence

of boosting phenomenon is insensitive to the
choice of the phenomenological static parameter

ℓ⋆◦
←• , indicating that suppression of boosting

by sufficiently strong blocking enhancement
and persistence of of boosting for low blocking
enhancement is robust, also in the presence of
backtracking.

3.5.2.2. Critical and weak static repulsion
We consider blocking enhancement both for back-
tracking and translocation with the same parameters
as above but for critical static repulsion strength and

extremely weak static repulsion, which can be realized
by clinging as mechanism that reduces backtrack-
ing and translocation. As expected from the general
discussion above there is no boosting. RNAP block-
ing enhancement leads to jamming for all densities
(figures 9(a) and (b)). This jamming is stronger as the
repulsion gets weaker, as demonstrated by the plots in
figures 10(a) and (b).

4. Summary and conclusions

In this work we have studied the effect of backtrack-
ing of RNAP on the average flux and velocity of
RNAP along the DNA template during transcription
elongation by considering the role of reverse reac-
tions in the mechanochemical cycle that drives trans-
location. As starting point we have used the math-
ematically tractable model of [30] which has proven
to be successful in understanding the role of inter-
actions between RNAP in the emergence of cooper-
ative pushing [27], called boosting in the present
work. Boosting is a macroscopic phenomenon that
is observed in biochemical experiments [23–26] and

13
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Figure 9. RNAP velocity v and RNAP flux j as functions of RNAP density with static interaction strength y= 2 and kinetic

interaction parameter ℓ⋆◦
←• =−0.9 for different values r

→• ◦⋆. Curves from top to bottom with value of r
→• ◦⋆ : 0,−0.3,

−0.5,−0.8,−0.9. The dotted lines correspond to non-interacting RNAP.

Figure 10. RNAP velocity v and RNAP flux j as functions of RNAP density with static interaction strength y= 1.0001 and kinetic

interaction parameter ℓ⋆◦
←• =−0.9 for different values r

→• ◦⋆. Curves from top to bottom with value of r
→• ◦⋆ : 0,−0.3,

−0.5,−0.8,−0.9. The dotted lines correspond to non-interacting RNAP.

signifies an enhancement of the overall rate of tran-
scription elongation through an increase of the aver-
age RNAP velocity that has its origin in pushes of
stalled RNAP by trailing RNAP. It thus overcom-
pensates jamming which arises from blocking the
translocation of active RNAP by stalled RNAP and
thus leads to a ‘traffic jam’ [5] that reduces the RNAP
flux and thus the average RNAP velocity.

Significantly, as already noticed in [30], while
simple steric excluded volume interaction between
RNAP is enough to explain the emergence of jam-
ming, themere of existence of individual RNAPpush-
ing, is not sufficient to explain boosting. Likewise,
it was found in the present work that the presence
of backtracking alone (which enhances the role of
blocking) does not predict whether jamming takes
over or whether boosting persists. Several key con-
cepts are found to be crucial to understand how the
interplay of microscopic forces that arise from inter-
actions between individual RNAP moving along on
the DNA template leads to the macroscopic collective
phenomena of jamming and boosting.

The most important (and perhaps obvious)
concept is the distinction between microscopic inter-
actions between individual RNAP and the emergent
collective phenomena that appear on experimental
macroscopic scale. This is reflected in terminology
adopted in the present paper: on the microscopic
level we speak of blocking and pushing of RNAP,
while the collective macroscopic counter parts are
called jamming and boosting. With the latter term
we deviate from the more standard notion of cooper-
ative pushing which is what we mean by boosting,
but which somewhat obscures the fundamental dis-
tinction between microscopic interaction between
individual objects and collective outcome of this
interaction.

The second most important (and perhaps less
obvious) notion is the distinction on microscopic
level between two kinds of interactions between indi-
vidual RNAP, viz., (i) static interactions that determ-
ine the stationary distribution of the microscopic-
ally stochastic dynamics of translocation during tran-
scription elongation, and (ii) kinetic interactions that

14
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determine the rates with which the various micro-
scopic processes in the mechanochemical cycle of
RNAP translocation occur. These two kinds of inter-
actions are conceptually different, but both physically
andmathematically linked: A probability distribution
for the microscopic dynamics determined by a given
set of static interaction energies cannot be stationary
for just any set of transition rates that encode the kin-
etic interactions. They have to be both physically and
mathematically consistent. For ourmodel this consist-
ency is proved mathematically and allows us to make
exact predictions within the framework of thismodel.
In particular, it shows that (and how precisely) static
repulsion or attraction correlate with kinetic blocking
and pushing.

Finally, the third fundamental concept that (per-
haps not surprisingly) plays a determining role are
general characteristics of these interactions. The point
in the present context is that the process of transloca-
tion of RNAP is permanently out of thermal equilib-
rium. Hence the interaction energy appearing in the
stationary distribution has to be understood as a phe-
nomenological effective energy. Therefore it cannot be
derived from fundamental principles of Newtonian
classical mechanics but needs to be postulated. When
developing models it makes therefore makes sense to
be guided on the one hand by empirical data (which
are usually in short supply for the processes we have
in mind) and by general theoretical notions such as
interaction range (short-ranged or long-ranged), sign
(attractive or repulsive), and strength. As empirical
data are not readily available for quantitative pre-
dictions by the present simplified model we con-
sider most parameters as variables and study how the
quantities that we have computed change as these
parameters are changed.

Taking these general insights as guide line, the
main insight of the present work is that also in
the presence of backtracking the strength of boost-
ing, i.e. the phenomenon of cooperative pushing, is
primarily determined by the strength of the effective
static interaction between RNAP. As in the absence
of backtracking, this static interaction needs to be
repulsive and sufficiently strong, i.e. above a crit-
ical value that is determined by the interplay of the
microscopic forces between two RNAP located at
nearest neighbor or next-nearest sites. If pushing is
strong enough then boosting occurs in a range of
RNAP densities which is determined by the strength
of blocking due to steric excluded volume interaction
and blocking enhancement.

This conclusion is deduced from two observa-
tions. The first point to note is that backtracking
arising from the reversed mechanochemical cycle
appears in the rate of elongation in a direct reduc-
tion of the average speed of individual RNAP that
is determined by the rate of backward pushing and
which arises already in the absence of interaction. It is

a straightforward consequence of the fact that occa-
sional backtracking reduces the average speed of a
single RNAP that mostly moves by forward translo-
cation. Also in the interacting case this direct reduc-
tion of the average of an RNAP remains very small as
it is shown to be proportional to the small bare rate
of backtracking. Hence this effect has no significant
bearing on whether or not boosting occurs.

The second and more subtle manifestation of
backtracking in the rate of elongation is in the static
interaction strength itself. The consistency relations
show that this effect is linked to the rate of push-
ing and blocking enhancement in forward transloca-
tion and hence indepedent of the overall bare rate of
backtracking. When pushing and blocking enhance-
ment in forward translocation are sufficiently strong
to cause boosting, then by consistency also block-
ing enhancement of backtracking RNAP is necessar-
ily large and even consistent with a very short-ranged
attraction that may cause clinging and pulling. Thus
the strength of boosting is indepedent of whether
backtracking takes place at all.

The present model is highly stylized and in order
to examine which microscopic mechanims of back-
tracking affect boostingwe have focussed on a specific
one. An open question to be addressed in future the-
oretical work is the role of other modes of backtrack-
ing, in particular, backtracking directly from state
1 without PPi bound which was considered in [32]
but without taking into account pushing. A second
open problem is the range of interaction which in the
present work was taken to be at most next-nearest
neighbor to allow for exact computations in closed
form. Current work on exclusion processes without
internal degree of freedom shows that the exact sta-
tionary distribution can be constructed also for inter-
actions with longer range [60]. It is interesting to
extend this approach to allow for mechanochemical
cycles with 2 ormore states. This will open up the pos-
sibility to adjust interaction parameters to less stylized
interaction forces and to experimental data that may
be expected from technological advances in the obser-
vation of motion of single RNAP.
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Appendix. Consistency relations and
proof of the theorem

We provide a way how to find conditions on para-
meters appearing in the rates (1)–(4) such that the
invariant measure of the process is of the form (9). In
order to do that we employ the method used in [30].
Namely, at equilibrium one can rewrite the master
equation of the process in a local divergence by using
a specific discrete form of Noether’s theorem (57).

A.1. Stationary condition
Dividing (8) by the stationary distribution (9), the
stationary condition becomes

N∑
i=1

[
ri
(
ηi
tlf

) π (ηi
tlf

)
π (η)

+ ℓi
(
ηi
tlb

) π (ηi
tlb

)
π (η)

+ ai
(
ηi
rel

) π (ηi
rel

)
π (η)

+ di
(
ηi
bin

) π (ηi
bin

)
π (η)

−(ri (η)+ ℓi (η)+ ai (η)+ di (η))

]
= 0. (52)

Now we introduce the quantities

Ri (η) = ri
(
ηi
tlf

) π (ηi
tlf

)
π (η)

− ri (η) , (53)

Li (η) = ℓi
(
ηi
tlb

) π (ηi
tlb

)
π (η)

− ℓi (η) , (54)

Ai (η) = ai
(
ηi
rel

) π (ηi
rel

)
π (η)

− ai (η) , (55)

Di (η) = di
(
ηi
bin

) π (ηi
bin

)
π (η)

− di (η) . (56)

Taking into account periodicity, the stationarity
condition (52) is satisfied if the lattice divergence
condition

Ri (η)+ Li (η)+Ai (η)+Di (η) = Φi (η)−Φi+1 (η)

(57)

holds for all allowed configurations with a family
of functions Φi(η) satisfying ΦN+1(η) = Φ1(η). The
lattice divergence condition can be understood as a
specific discrete form of Noether’s theorem.

A.2. Mapping to the headway process
Due to steric hard core repulsion, a translocation
of the ith rod from ki to ki + 1, corresponding
to the transition (mi−1,mi)→ (mi−1 + 1,mi − 1),

takes place if mi > 0. Similarly, only if mi−1 > 0
the backtracking corresponding to the transition
(mi−1,mi)→ (mi−1 − 1,mi + 1) can occur.

In terms of the new stochastic variables ζ =
(m,α) given by the distance vector m and the state
vector α the transition rates (1)–(4) become

r̃i (ζ) = rδαi,1

(
1+ r⋆

→• θ0i−1 + r
→• ◦⋆θ1i

)(
1− θ0i

)
;

(58)

ℓ̃i (ζ) = ℓδαi,2

(
1+ ℓ⋆◦

←• θ1i−1 + ℓ
←• ⋆θ0i

)(
1− θ0i−1

)
;

(59)

ãi (ζ) = aδαi,2

(
1+ a⋆•θ0i−1 + a•⋆θ0i + a⋆•⋆θ0i−1θ

0
i

+a⋆◦•θ1i−1 + a•◦⋆θ1i
)
; (60)

d̃i (ζ) = dδαi,1

(
1+ d⋆•θ0i−1 + d•⋆θ0i + d⋆•⋆θ0i−1θ

0
i

+d⋆◦•θ1i−1 + d•◦⋆θ1i
)
. (61)

Before writing the master equation for the head-
way process, we introduce notation for the configur-
ation that leads to a given configuration ζ. Namely,
ζ i−1,i,ζ i,i−1 correspond to translocation and back-
tracking respectively, and ζ i,rel,ζ i,bin correspond to
PPi release and binding respectively. Before introdu-
cing these configurations, we denote by (k, l) the pair
(i− 1, i) or (i, i− 1) and by ♯ the superscript rel or bin.
Thus, the configurations ζ i−1,i,ζ i,i−1,ζ i,rel, and ζ i,bin

are defined by

mk,l
j :=mj + δj,l − δj,k and sk,lj := αj +

(
3− 2αj

)
δj,i,

(62)

mi,♯
j :=mj and αi,♯

j := αj +
(
3− 2αj

)
δj,i. (63)

This yields the master equation

dP(ζ, t)
dt

=
N∑

i=1

Qi (ζ, t) (64)

with

Qi (ζ, t) = r̃i
(
ζ i−1,i

)
P
(
ζ i−1,i, t

)
− r̃i (ζ)P(ζ, t)

+ ℓ̃i

(
ζ i,i−1

)
P
(
ζ i,i−1, t

)
− ℓ̃i (ζ)P(ζ, t)

+ ãi
(
ζ i,rel

)
P
(
ζ i,rel, t

)
− ãi (ζ)P(ζ, t)

+ d̃i
(
ζ i,bin

)
P
(
ζ i,bin, t

)
− d̃i (ζ)P(ζ, t)

(65)

where

r̃i
(
ζ i−1,i

)
= rδαi,2

(
1+ r⋆

→
• θ1i−1 + r

→
• ◦⋆θ0i

)(
1− θ0i−1

)
,

(66)

ℓ̃i

(
ζ i,i−1

)
= ℓδαi,1

(
1+ ℓ⋆◦

←
• θ0i−1 + ℓ

←
• ⋆θ1i

)(
1− θ0i

)
,

(67)
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ãi
(
ζ i,rel

)
= aδαi,1

(
1+ a⋆•θ0i−1 + a•⋆θ0i + a⋆•⋆θ0i−1θ

0
i

+a⋆◦•θ1i−1 + a•◦⋆θ1i
)
, (68)

d̃i
(
ζ i,bin

)
= dδαi,2

(
1+ d⋆•θ0i−1 + d•⋆θ0i + d⋆•⋆θ0i−1θ

0
i

+d⋆◦•θ1i−1 + d•◦⋆θ1i
)
. (69)

Thanks to the discrete version of Noether the-
orem, one can rephrase the stationarity condition for
the headway process in a local divergence form which
is equivalent to (57). Let us first introduce the follow-
ing notations

R̃i (ζ) = r̃i
(
ζ i−1,i

) π̃
(
ζ i−1,i

)
π̃ (ζ)

− r̃i (ζ) , (70)

L̃i (ζ) = ℓ̃i

(
ζ i,i−1

) π̃
(
ζ i,i−1

)
π̃ (ζ)

− ℓ̃i (ζ) , (71)

Ãi (ζ) = ãi
(
ζ i,rel

) π̃
(
ζ i,rel

)
π̃ (ζ)

− ãi (ζ) , (72)

D̃i (ζ) = d̃i
(
ζ i,bin

) π̃
(
ζ i,bin

)
π̃ (ζ)

− d̃i (ζ) . (73)

Again, we make use of (k, l) for (i− 1, i) or (i, i− 1)
and ♯ for the superscript rel or bin. Notice that

θ
p
j

(
ζk,l
)
= δmj+δj,l−δj,k,p = θ

p−δj,l+δj,k
j (ζ) and

δ
αk,l

i ,α
= δαi,3−α; (74)

θ
p
j

(
ζ i,♯
)
= θ

p
j (ζ) and δαi,♯

i ,α = δαi,3−α, (75)

so that one gets

π̃
(
ζ i,♯
)

π̃ (ζ)
= x3−2αi , (76)

π̃
(
ζk,l
)

π̃ (ζ)
= x−3+2αiyθ

0
k−θ1k+θ0l . (77)

Hence,

R̃i (ζ) = x−1yθ
0
i−1+θ0i −θ1i−1rδαi,2

(
1+ r⋆

→• θ1i−1 + r
→• ◦⋆θ0i

)(
1− θ0i−1

)
− rδαi,1

(
1+ r⋆

→• θ0i−1 + r
→• ◦⋆θ1i

)(
1− θ0i

)
, (78)

L̃i (ζ) = xyθ
0
i −θ1i +θ0i−1ℓδαi,1

(
1+ ℓ⋆◦

←• θ0i−1 + ℓ
←• ⋆θ1i

)(
1− θ0i

)
− ℓδαi,2

(
1+ ℓ⋆◦

←• θ1i−1 + ℓ
←• ⋆θ0i

)(
1− θ0i−1

)
, (79)

Ãi (ζ) = (xδαi,1 − δαi,2)a
(
1+ a⋆•θ0i−1 + a•⋆θ0i + a⋆•⋆θ0i−1θ

0
i + a⋆◦•θ1i−1 + a•◦⋆θ1i

)
, (80)

D̃i (ζ) =
(
x−1δαi,2 − δαi,1

)
d
(
1+ d⋆•θ0i−1 + d•⋆θ0i + d⋆•⋆θ0i−1θ

0
i + d⋆◦•θ1i−1 + d•◦⋆θ1i

)
. (81)

One requires

R̃i + L̃i + Ãi + D̃i = Φ̃i−1 − Φ̃i, (82)

where Φ̃i is of the form Φ̃i = (e+ fθ0i + hθ1i )(δαi,1 +
δαi,2) = e+ fθ0i + hθ1i . Notice that Φ̃i must be of that
form since R̃i, L̃i, Ãi, D̃i depend on the state of rod i
and variables θ0i−1,θ

1
i−1,θ

0
i ,θ

1
i belonging to {0,1}.

By considering all possible cases of (82), one first
gets

f =
−r
(
1+ r⋆

→•
)
+ xℓ

(
1+ ℓ

←• ⋆
)

1+ x
(83)

h=
rr
→• ◦⋆ − xℓℓ⋆◦

←•

1+ x
(84)

and then one gets the stationary conditions (15)–(21).
However, we shall give a short proof of the above
claim in the next subsection after knowing the results.

A.3. Proof of theorem 2.1
As previously noted, it is necessary to account for all
instances of (82) in order to identify the constraints.
Yet, this task may seem tedious in ensuring the accur-
acy of the results. In this context, we aim to present
a concise proof of theorem 2.1. Consequently, we
will demonstrate that given conditions (15)–(21), the
process’s invariant measure adheres to the structure
described in (22). Our objective is achieved by con-
firming that (82) holds for all configurations.

• If mi−1,mi > 1, one has R̃i = x−1rδαi,2 −
rδαi,1, L̃i = xℓδαi,1 − ℓδαi,2, Ãi = (xδαi,1 − δαi,2)a,
D̃i = (x−1δαi,2 − δαi,1)d. Notice that in this case,
the left-hand side of (82) is 0. If the state of rod is 1
meaning that αi = 1, one has R̃i + L̃i + Ãi + D̃i =
−r+ xℓ+ xa− d which is 0 due to (15). Similarly,
for the case αi = 2, (82) holds.

• If mi−1 > 1,mi = 1, one has R̃i = x−1rδαi,2 −
rδαi,1(1+ r

→• ◦⋆), L̃i = xy−1ℓδαi,1(1+ ℓ
←• ⋆)−

ℓδαi,2, Ãi = (xδαi,1 − δαi,2)a(1+ a•◦⋆), D̃i =
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(x−1δαi,2 − δαi,1)d(1+ d•◦⋆). Notice that in this
case the left-hand side of (82) is −h. If αi = 1,

one has R̃i + L̃i + Ãi + D̃i =−r(1+ r
→• ◦⋆)+

xy−1ℓ(1+ ℓ
←• ⋆)+ xa(1+ a•◦⋆)− d(1+ d•◦⋆). It

is easy to check from (15), (16), and (21) that
R̃i + L̃i + Ãi + D̃i =−hwhere h is defined in (84).
Thus, (82) holds for this case. Similarly, for the case
αi = 2, (82) holds as well.

• For the rest of the cases: mi−1 > 1,mi = 0; mi−1 =
1,mi > 1; mi−1 = 0,mi > 1; mi−1 = 1,mi = 1;
mi−1 = 1,mi = 0; mi−1 = 0,mi = 1; mi−1 =
0,mi = 0, one considers similarly to show that (82)
holds.

The proof is complete.
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