001     1034775
005     20250203103400.0
024 7 _ |2 doi
|a 10.1101/2024.09.20.24314055
037 _ _ |a FZJ-2024-07529
100 1 _ |0 P:(DE-Juel1)187351
|a Komeyer, Vera
|b 0
|e Corresponding author
245 _ _ |a Correct deconfounding enables causal machine learning for precision medicine and beyond
260 _ _ |c 2024
336 7 _ |0 PUB:(DE-HGF)25
|2 PUB:(DE-HGF)
|a Preprint
|b preprint
|m preprint
|s 1736258044_14437
336 7 _ |2 ORCID
|a WORKING_PAPER
336 7 _ |0 28
|2 EndNote
|a Electronic Article
336 7 _ |2 DRIVER
|a preprint
336 7 _ |2 BibTeX
|a ARTICLE
336 7 _ |2 DataCite
|a Output Types/Working Paper
520 _ _ |a Artificial intelligence holds promise for individualized medicine. Yet, predictive models in the neurobiomedical domain suffer from a lack of generalizability and replicability so that transitioning models from prototyping to clinical applications still poses challenges. Key contributors to these challenges are confounding effects; in particular the oftentimes purely statistical perspective on confounding. However, complementing these statistical considerations with causal reasoning from domain knowledge can make predictive models a tool for causal biomedical inference beyond associative insights. Such causal insights give answers to biomedical questions of how and why, arguably what most biomedical investigations ultimately seek for. Here, we suggest a 5-step approach for targeted, context-informed deconfounding. We exemplify the 5-step approach with a real-world neurobiomedical predictive task using data from the UK Biobank. The core of this approach constitutes a bottom-up causal analysis to identify a correct set of deconfounders and the appropriate deconfounding method for a given causal predictive endeavour. Using the 5-step approach to combine causal with statistical confounder considerations can make predictive models based on observational (big) data a technique comparable to Randomized Control Trials (RCTs). Through causally motivated deconfounding we aim at facilitating the development of reliable and trustworthy AI as a medical tool. In addition, we aim to foster the relevance of low performing or even null result models if they originate from a “skilful interrogation of nature”, i.e. a deconfounding strategy derived from an adequate causal and statistical analysis. Ultimately, causal predictive modelling through appropriate deconfounding can contribute to mutual recursive feedback loops of causal insights across disciplines, scales and species that enable the field to disentangle the cause-effect structure of neurobiomedical mechanisms.
536 _ _ |0 G:(DE-HGF)POF4-5254
|a 5254 - Neuroscientific Data Analytics and AI (POF4-525)
|c POF4-525
|f POF IV
|x 0
536 _ _ |0 G:(DE-HGF)POF4-5251
|a 5251 - Multilevel Brain Organization and Variability (POF4-525)
|c POF4-525
|f POF IV
|x 1
536 _ _ |0 G:(GEPRIS)431549029
|a DFG project G:(GEPRIS)431549029 - SFB 1451: Schlüsselmechanismen normaler und krankheitsbedingt gestörter motorischer Kontrolle (431549029)
|c 431549029
|x 2
588 _ _ |a Dataset connected to CrossRef
700 1 _ |0 P:(DE-Juel1)131678
|a Eickhoff, Simon
|b 1
700 1 _ |0 P:(DE-Juel1)176538
|a Rathkopf, Charles
|b 2
700 1 _ |0 P:(DE-Juel1)161406
|a Grefkes, Christian
|b 3
700 1 _ |0 P:(DE-Juel1)172843
|a Patil, Kaustubh
|b 4
700 1 _ |0 P:(DE-Juel1)185083
|a Raimondo, Federico
|b 5
|e Corresponding author
773 _ _ |a 10.1101/2024.09.20.24314055
856 4 _ |u https://www.medrxiv.org/content/medrxiv/early/2024/09/23/2024.09.20.24314055.full.pdf
909 C O |o oai:juser.fz-juelich.de:1034775
|p VDB
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)187351
|a Forschungszentrum Jülich
|b 0
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)131678
|a Forschungszentrum Jülich
|b 1
|k FZJ
910 1 _ |0 I:(DE-HGF)0
|6 P:(DE-Juel1)131678
|a HHU Düsseldorf
|b 1
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)176538
|a Forschungszentrum Jülich
|b 2
|k FZJ
910 1 _ |0 I:(DE-HGF)0
|6 P:(DE-Juel1)161406
|a INM-3
|b 3
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)172843
|a Forschungszentrum Jülich
|b 4
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)185083
|a Forschungszentrum Jülich
|b 5
|k FZJ
913 1 _ |0 G:(DE-HGF)POF4-525
|1 G:(DE-HGF)POF4-520
|2 G:(DE-HGF)POF4-500
|3 G:(DE-HGF)POF4
|4 G:(DE-HGF)POF
|9 G:(DE-HGF)POF4-5254
|a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|v Decoding Brain Organization and Dysfunction
|x 0
913 1 _ |0 G:(DE-HGF)POF4-525
|1 G:(DE-HGF)POF4-520
|2 G:(DE-HGF)POF4-500
|3 G:(DE-HGF)POF4
|4 G:(DE-HGF)POF
|9 G:(DE-HGF)POF4-5251
|a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|v Decoding Brain Organization and Dysfunction
|x 1
914 1 _ |y 2024
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)INM-7-20090406
|k INM-7
|l Gehirn & Verhalten
|x 0
920 1 _ |0 I:(DE-Juel1)INM-3-20090406
|k INM-3
|l Kognitive Neurowissenschaften
|x 1
980 _ _ |a preprint
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)INM-7-20090406
980 _ _ |a I:(DE-Juel1)INM-3-20090406
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21