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Abstract
Several dedicated High-Performance Computing (HPC) centers provide essential expertise and
support in developing a suitable portfolio of EUROfusion standard codes. Barcelona
Supercomputing Center (BSC) is one of these HPC hubs involved in this complex task. Several
fusion codes were selected, installed and analyzed to meet the developers’ requirements,
ranging from portability to GPU, improving the performance, getting better data management,
extending the capacity of coupling with other codes, etc. In this paper, we will describe the work
developed by BSC and some of the tasks carried out in this project. We will explain briefly how
the project is faced and the work required to create good quality codes, i.e. robust and trustable
software capable of running efficiently in modern HPC systems.

Keywords: ACH, HPC, GPU, optimization, ERO2, SPICE2, KNOSOS

1. Introduction

In the European Research Roadmap to the realisation of
fusion energy [1], there is a need to accelerate the under-
standing and predictive capabilities of simulation models to
guide ITER [2] operation and DEMO [3] design. A key factor
to achieve this milestone is the production of a high-quality
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suite of research codes called EUROfusion-standard software
to model data from existing EUROfusion facilities and to reli-
ably extrapolate to these future devices. EUROfusion-standard
software [4] is basically a common development platform
following modern software engineering standards that will
benefit EUROfusion users with free availability of up-to-date
release versions of the research source codes to be used for
production runs.

To enable large-scale numerical simulations, several ded-
icated High-Performance Computing (HPC) centres provide
essential expertise and support in developing a suitable port-
folio of EUROfusion standard software codes. These centres
are called Advanced Computing Hubs (ACHs) and will
provide expert help to users under three categories: (1) HPC

1 © 2024 The Author(s). Published by IOP Publishing Ltd
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working in scalable algorithms, code parallelization, per-
formance optimization, code refactoring, and GPU-enabling,
among others; (2) Integrated modelling and control working
in code adaptation to IMAS framework; and finally, (3) Data
management developing open access to data and data analysis
tools.

Barcelona Supercomputing Center (BSC) is one of the
HPC hubs involved in this complex task. Several fusion
codes were selected, installed and analysed in order to meet
the developers’ requirements, ranging from portability to
GPU, improving the performance, getting better data man-
agement or extending the capacity of coupling with other
codes. Three different groups from BSC are involved in
this project: Operations, Best Practices for Performance and
Programmability group (BePPP) and Fusion. The operations
group is in charge of maintenance, deployment and perform-
ance knowledge of the clusters available at BSC. This group is
fundamental in the installation, performance testing and accel-
eration of software using vectorization and hybridization tech-
niques on heterogeneous HPC architectures. The BePPP is
expert in activities such as developing programming models,
dynamic load balancing of HPC code or scalability on many
architectures. The researchers at BePPP have a long track
record in performance assessment as well as in software engin-
eering, development of tools, methodologies and techniques
for the analysis and performance enhancement of the perform-
ance of HPC codes. Finally, the fusion group, has experts in
the optimization of codes, GPU porting and expertise in the
simulated physics in which each code is involved.

This paper describes the work developed by BSC in this
project, and it is structured as follows. Section 2 introduces the
role of the ACHs and their objectives within the EUROfusion
framework. In section 3, the methodology and tools used
to develop the work are presented. Section 4 explains the
work required to improve an example set of codes to be
capable of running efficiently in modern HPC systems. We
included in this paper the work on three codes: SPICE2,
ERO2.0 and KNOSOS. Finally, some concluding remarks are
highlighted.

2. EUROfusion ACHs

The European Research Roadmap provides a clear and
structured way forward to commercial energy from fusion,
and it can be considered the basis for the programs of
EUROfusion and Fusion for Energy (F4E). The roadmap out-
lines steps to push fusion from being laboratory-based and
science-driven towards an industry- and technology-driven
venture.

The most remarkable milestones in this roadmap are the
building of two machines: DEMO and ITER. DEMOnstration
fusion power plant project is being conducted in Europe as part
of the European Research Roadmap. DEMO follows ITER
project and its goal is to design a commercial fusion power
plant. This is a crucial step since ITER is an experimental
machine not connected to the grid to deliver electrical energy.
Conversely, DEMO should deliver 300–500 MW of electrical

Figure 1. BSC-ACH organization.

energy to the grid (MWe). The design, construction and oper-
ation of DEMO require the full involvement of industry
and this will ensure that after a successful DEMO operation
industry can take on the responsibility for commercial fusion
power.

However, the step from ITER to DEMO is challenging.
DEMO design is complex regarding the number of systems
necessary to produce and control the plasma. Experimental
data from ITER and IFMIF-DONES [5] are essential but insuf-
ficient to design DEMO with confidence inside an unexplored
environment to predict plasma and materials performance.
Consequently, there is a need to create a high-quality suite of
research codes (EUROfusion-standard software) tomodel data
from existing EUROfusion facilities and extrapolate to future
devices reliably.

Therefore, the goal is to bring together fusion physi-
cists, materials scientists and engineers with a new generation
of mathematicians and computer scientists within the same
organizational framework to use high-performance computers
(HPC) and accelerate the development of fusion energy.

As part of this approach, EUROfusion has initiated coordin-
ation among theory and advanced simulation by creating the
Theory, Simulation, Validation and Verification tasks (TSVV)
and the ACHs. The TSVVs will perform fundamental research
and channel science, and theACHswill be computing of excel-
lence in specific fields of scientific modelling and simulation
that will provide their expertise and knowledge to TSVVs.

2.1. BSC-ACH

In 2021, EUROfusion, through the Centro de
Investigaciones Energéticas, Medioambientales y
Tecnológicas (CIEMAT) [6], entrusted BSC to cre-
ate one of these ACHs that offers advanced simula-
tion to TSVVs. This hub is named BSC-ACH and
provides expert support to users regarding HPC: scal-
able algorithms, code parallelization, performance optim-
ization, code refactoring, and GPU-enabling, among
others.

BSC-ACH is organized as figure 1 shows. Three research
groups at BSC work collaboratively in each project: Fusion,
Operations and BePPP. The Fusion group provides the know-
ledge required by the fusion scientific codes. The Operations
team contributes the knowledge and tools to cover the differ-
ent computer architectures. Finally, the BePPP team brings the

2



Plasma Phys. Control. Fusion 66 (2024) 075014 X Sáez et al

Table 1. Codes assigned to BSC-ACH. The codes with a grey background have been selected for this paper.

Code Work required ACH groups in charge

SOLPS 1. Check the correctness of the OpenMP multi-threading Operations, BePPP
2. Improve compiler options and/or job submission script
3. Consider vectorization of the code profitable for use on Cray platform

KNOSOS Optimization Operations
XTOR-K GPU porting Fusion, Operations
BIT1 GPU porting Fusion, Operations
SPICE2 Implementing parallel Poisson Solver and parallel electric field calculations Fusion, Operations
GENE-X 1. Implementing the ability to access the unstructured computational grid in arbitrary order Fusion, Operations

2. Testing the performance of different reordering strategies
ERO 2.0 GPU porting Fusion, BePPP
STELLA Optimization BePPP
JOREK Reduce memory consumption and improve performance Fusion, Operations

experience to modify and update the codes following the best
practices to get high-quality codes.

Following figure 1, TSVVs are responsible for making the
necessary requests to ACHs to improve the performance and
efficiency of the codes they need for their research. These
requests may include optimizing existing codes, implement-
ing new functionalities, porting the code to new architectures
or adopting new tools and technologies that can help them
achieve their goals by reducing the computing time spent in the
simulations or improving the quality of the results achieved. In
other words, the ACHs’ goal is to ensure that the codes are as
efficient and effective as possible, allowing TSVVs to advance
their research more quickly and efficiently. In particular, as an
example, table 1 depicts the work requests done by TSVVs to
BSC-ACH on different fusion codes.

3. Methodology

3.1. Working procedure

The working diagram starts with a kick-off meeting (KoM)
between the developers and the ACH staff. This meeting is the
first contact between both teams to answer basic questions to
start working: description of the code, libraries used, paral-
lelization applied, performance, requests from developers to
perform in the code, etc. Regarding these requests, there is
a discussion to establish the priority among them depending
on their feasibility and required resources, since the available
time and resources to achieve the results are limited.

The next step is installing the code in one of the BSC
clusters. Any issue that appears in this process is discussed
with the developers. Once the code is installed, the Operations
and BePPP teams do a performance analysis to evaluate if
there is room for improvement, e.g. detecting bottlenecks
among memory accesses, unbalance among processes, or a
low number of arithmetic instructions executed. This analysis
serves as a basis for deciding on the next steps.

The priority is to solve any performance issue detected.
If this is not possible because there is not enough time and
resources to carry out such a task, a new following meeting
is scheduled to discuss with the developers how to continue.
For example, improving efficiency could require the change of

specific data structures that would involve modifying much of
the source code. Finally, for each code is written a report of
the work developed every year.

3.2. Tools

This section introduces some of the tools used for the analysis
in the example codes described later.

3.2.1. Profiling

• Extrae [7] is a tool to trace the performance of a code by
collecting hardware performance indicators and software
events to generate trace files.

Extrae is compatible with several programming models,
such as OpenMP [8], MPI [9], OpenCL [10], CUDA [11],
and their combined usage with MPI. To analyze a code with
Extrae, it is necessary to instrument that code by the sub-
mission of a script defining certain environmental variables.
The user can customize the instrumentation in an XML file,
which specifies hardware counters to record, detail level of
the tracing, andmore. Once the execution is completed, each
process generates a file encapsulating the collected perform-
ance data. These files are unified in a coherent way to one
final file using another tool.

The fundamental strategy used by Extrae for tracing is
based on the early loading of a cloned MPI library with the
same routines, using LD_PRELOAD environment variable
in Linux systems. This cloned library contains extra code
for tracing the execution and then calling the true routines in
the original library. Extrae also offers the option of a more
detailed instrumentation by allowing the user to add manu-
ally specific events inside the code.

• POP standard metrics [12] is a methodology for analyzing
parallel codes to provide a quantitative way of measuring the
relative impact of the different factors inherent in parallel-
ization. This methodology was defined by the Performance
Optimisation and Productivity Center of Excellence in HPC
(POP CoE) [13].

From the trace data of an execution provided by Extrae,
the tool calculates a set of metrics, organized in a hierarchy,
so that each metric reflects a common cause of inefficiency
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in parallel programs (such as for example figure 5, which is
presented later in this paper).

These metrics are then calculated as efficiencies between
0% and 100% and, in general, efficiencies above 80% are
considered acceptable, whereas lower values indicate per-
formance issues that need to be explored in detail.

3.2.2. Tracing

• Paraver [14], also known as Parallel Visualization and
Events Representation, is a utility designed at BSC to visu-
alize and examine trace files.

From trace files produced by Extrae of an execution,
Paraver can present a timeline (such as figure 4, which
is discussed further on) from a great number of available
metrics (e.g. floating-point operations per second (flops),
instructions per second (IPS), instructions per cycle (IPC),
MPI calls, user functions, bandwidths and more). Analyzing
these timelines, we can identify patterns or regions with per-
formance issues as bottlenecks.

• NVIDIA Nsight Systems [15] is a system-wide perform-
ance analysis tool designed at NVIDIA Corporation to help
identify regions that present bottlenecks across the CPU and
GPU. The tool supports various programming languages,
APIs, and standards, including CUDA, OpenACC [16],
OpenMP, and more.

Nsight Systems provides a unified timeline (such as
figure 7, which can be found later in the next section) that
presents how an application utilizes the system’s hardware
and software resources. As Paraver, this timeline allows us
to identify opportunities for optimization and avoid poten-
tial performance pitfalls, such as inefficient resource usage
or load unbalancing among threads.

3.3. Machines

This section gives an overview of the different machines used
for this paper.

• MareNostrum 4 (MN4) [17] is a general-purpose system
located at BSC. It is composed of 3456 nodes and each
node has two Intel Xeon Platinum 8160 chips, each with 24
processors, amounting to a total of 165888 processors and
a main memory of 390 Terabytes. Its peak power is 11.15
Petaflops.

• CTE-POWER [17] is a cluster based on IBM Power9 pro-
cessors hosted at BSC, with a Linux Operating System and
an InfiniBand interconnection network. Its main character-
istic is the availability of 4 NVIDIA Volta GPUs per node,
making it an ideal cluster for GPU-accelerated applications.
It has a computing power of over 1.5 Petaflops.

• Marconi [18] is a supercomputer located at CINECA with
3188 computing nodes. Each node contains 2 Intel Xeon
8160 (24-processors) with 192 GBytes of RAM. The nodes
are connected using an Intel Omnipath network. The peak
performance is 10 Petaflops.

• Marconi100 (M100) [18] is an accelerated cluster based
on Power9 chips and Volta NVIDIA GPUs acquired by

CINECA. It has 980 nodes and each node contains 2 IBM
POWER9 AC922 with 16 processors and 256 GBytes. The
nodes are connected using an InfiniBand network. The peak
performance is about 32 Petaflops.

4. Example codes

This section addresses our work on a selection of codes
(SPICE2, ERO2 and KNOSOS) applying the methodology
and the tools detailed in the above section. For each code,
there is a brief description of that code, the task requested by
the developers, the work and tools employed, and the results
obtained in relation to the goals established initially.

The aim of this section is to share this knowledge, since
it is difficult to find this kind of real experience of porting or
improving the performance of production fusion codes in HPC
architectures due to its complexity.

4.1. SPICE2

The Sheath Particle In CEll (SPICE) package [19–21] includes
two codes: SPICE2 (2D3V) and SPICE3 (3D3V). These codes
are dedicated to performing simulations of particles in a fixed
magnetic and self-consistent electric field and have been suc-
cessfully used for the study of plasma deposition near castel-
lated Plasma Facing Components (PFCs).

SPICE2 is written in Fortran 90 and parallelized follow-
ing the domain decomposition principle and message-passing
interface (MPI). All internal routines are parallel, except for
the Poisson solver. The Poisson solver is sequential and takes
3% of the overall calculation time. It operates with global
matrices of potential and charge density.

The solvers available in SPICE2 before this ACH work
were a direct solver built on UMFPACK libraries [22], using a
sparse matrix strategy to manage the matrix information, and
one parallel solver that present limitations in scalability. The
better solver, the serial one, is very fast, although it suffers
from the limitations of any direct solver when it reaches the
memory limit of the system.

After the KoM, the SPICE2 developers required the follow-
ing main goals. Firstly, implementing a 2D parallel Poisson
solver to run simulations by increasing grid size to allow
the code to treat bigger domains than the UMFPACK library
allows using (≈4000 cells in each dimension). And secondly,
the implementation of a parallel routine for E-field calculation.

To achieve these goals, the first task was to include a solver
from PETSc library [23] in the code. The solver selected
was the KSP linear solver context, and several options were
explored for solving the Poisson equation. Thirteen KSP solv-
ers were tested, and the fastest ones were KSPBCGS (pre-
conditioned biconjugate stabilized method), KSPFBCGSR
(a mathematically equivalent variant of flexible bi-CG-stab),
KSPPIPEBCGS (pipelined BiCGStab method) and KSPCG
(preconditioned conjugatemethod). Among them, the best res-
ult in terms of CPU time consumption was the KSPCG solver.
The preconditioner of KSP solver can be chosen from a big
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Figure 2. Scalability of selected KSP solvers for SPICE2 (left) and the wall-time consumed per each solver (right).

Figure 3. Scalability of SPICE2 on Marconi (left) and MN4 (right).

list of option in the PETSc library. We use the Jacobi’s pre-
conditioner to the conjugated gradient method. In general, the
PETSc library allows the use of different preconditioners for
each solver and it was not possible to assess the performance
of the solver and the preconditioner separately [24]. But as we
deal with a very simple Poisson equation, the usual solvers
reach convergence easily, and better results have always been
observed using preconditioners, regardless of the number of
nodes used (see figure 2) [25, 26].

4.1.1. PETSc inclusion. The new solvers were separately.
Figure 2 shows the scalability (left) and the wall-time con-
sumed (right) of the new solvers. The figure indicates the
best performance in the PETSc case: super-scalability for
GMRES and lowest wall-time for KPSPCG. These tests were
done using a medium matrix size, generated with a square of
1612 × 1612 domain.

Despite the good scalability of the solver based on the
PETSc library, the computation times, even for 128 pro-
cessors, do not exceed the computation speed of the solver
based on the UMFPACK library, which is a direct, sparse
and serial solver. The new solver, based on the PETSc lib-
rary, is able to run without present limitations regarding the
domain size. We obtain a good performance up to 128 pro-
cessors. Figure 3 (left) shows the results for the whole code
using PETSc solver on Marconi. In figure 3 (right), PETSc

Table 2. Comparison of the SPICE2 time using the serial
UMFPACK solver vs. the PETSc solver.

processors UMFPACK (s) PETSc (s)

16 108.716 976.339
32 105.991 441.469
64 117.479 247.903
128 124.301 175.839
256 160.317 153.775

solver standalone and SPICE2 code are shown running up to
128 processors on MareNostrum 4.

We can remark that in both supercomputers (Marconi and
MareNostrum4), a loss of scalability for 256 and 512 pro-
cessors is observed. Given the local domain is so small, the
number of communications makes the problem inefficient. If
the domain is increased, our expectation is that the efficiency
will improve.

A comparison of the use of the serial UMFPACK solver vs.
the PETSc solver is presented in table 2 for a 1600 × 1600
domain in SPICE2. The computing time of the code (exclud-
ing IO functions to avoid overhead) shows that while the com-
puting time using the serial solver increases slightly deb to the
relative weight of the time used to make initial matrix inver-
sion, the computing time using the PETSc solver reaches better
values for 256 processors.
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Figure 4. ERO2.0 Extrae trace view in Paraver.

To summarize the results of the scalability analysis, the
code has been tested and can run up to 512 processors with
acceptable scalability. The accuracy of the results with both
parallel solvers is acceptable, and the results were compared
with those from the direct solver when was possible, con-
cretely in small and medium domains. Using bigger domains
(more than 4000 cells per side), the comparison is not possible
as we explained earlier, and only the new PETSc solver can be
used.

4.2. ERO2

ERO2.0 [27] is a parallel Monte-Carlo simulation code for
particle transport in fusion plasma devices (e.g. tokamaks)
written in C++ and parallelized using MPI and OpenMP.

Following the initial work plan establishedwith the ERO2.0
team, we worked on two lines of improvements: firstly, the
performance analysis and, secondly, the introduction of GPU
support.

4.2.1. Performance assessment of ERO2.0 and proposal for
optimizations. Figure 4(b) plots the communications matrix.
Given a row i and column j, there is a communication between
process i and process j when there is a colour point in the
intersection (i,j). The colour gradient between green and blue
indicates the number of messages, where blue is the maximum
value. Therefore, the figure shows there are only communica-
tions between the MPI rank 0 and any other rank because row
0 and column 0 have colour points, which means the parallel
scheme of ERO2.0 is Master/Slave.

Looking at a different aspect, figure 4(a) plots a colour
gradient timeline (horizontal axis) for all the processes (in the
vertical axis). In this figure, green means a short burst of com-
putation, whereas blue means more significant useful compu-
tation times. Hence from the random distribution of colours in
the timeline, we deduce a variability in the duration of chunk
computations, which we could later map to a variability in
particle computation time. We can also observe that due to this
difference in duration in particle simulation, a load imbalance
is induced at the end of the simulation.

This load imbalance scales to become the main bot-
tleneck in the execution. For instance, the run shown in
figure 4(c) (in the same time scale as figure 4(a)) finishes
much faster and, consequently, the load imbalanced part of
the whole elapsed time is roughly half of the total execution
time.

For each process, the execution consists of fetching a chunk
of particles, opening an OpenMP parallel region to compute
the particles using all of its threads, and finally, when all
particles have been computed, closing the parallel region to
start the following communication. We have observed that due
to particle execution time variability, load imbalance occurs
each time the parallel region is closed. The main reason for
using OpenMP, as expressed by the developers, is to reduce
memory usage. However, when we increase the threads per
process ratio to improve memory usage, the application suf-
fers more from this load imbalance.

The next step was to characterize the performance of
ERO2.0 code by measuring the efficiency of the code by com-
puting the POP metrics for executions with different amounts
of nodes. Figure 5 depicts the loss of Parallel Efficiency is
correlated with both the load balance efficiency and the seri-
alization efficiency. This means that the load imbalance is
a problem at both levels, MPI and OpenMP. Moreover, the
figure also shows a serialization problemwhich we have found
is caused by a lack of parallelization at the data-gathering
phase.

As a result, the work was focused on solving the load
balance issues following three proposals: two to solve
the MPI load imbalance and one for the OpenMP load
imbalance.

The first proposal is to start with larger chunks of particles
and gradually reduce their size. This proposal aims to increase
the probability that a particle that will take long falls within a
chunk of the beginning of the execution.

The second idea tries to solve the load imbalance caused
by particles that take much more time to compute and are dis-
tributed with one of the last chunks. The proposed solution
is to dynamically compute the average computation time of
particles and then use this information, the number of remain-
ing particles, and the number of resources to predict whenmost
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Figure 5. ERO2.0 POP metrics table for 4, 8, 16, and 32 nodes.

Figure 6. Top time-consuming routines in ERO2 code.

particles will have finished. Finally, this prediction is used to
terminate the execution of particles past that point.

The last suggestion to solve the OpenMP load imbalance
involves including the MPI communication (needed to fetch
chunks) inside the OpenMP parallelization. More specifically,
each thread would perform its communication and manages
its particles. This parallelization scheme allows to have more
threads sharing some memory, reducing the overall memory
usage per node without the need for synchronization with each
other.

We have implemented proofs of concept for the three sug-
gestions andmeasured their performance in theMN4machine,
obtaining some preliminary results. For the first case, we
observed up to 34% speedups in most cases. On the contrary,
a slight improvement was observed from the second sugges-
tion. Finally, the measures realized using all the suggestions
applied reached a 50% improvement in the best-case scenario.
This answer allows us to continue to the next level of work,
which includes adding all these improvements to the produc-
tion version of the ERO2.0 code.

4.2.2. Introduction of GPU support. The starting point for
porting to GPU was the introduction of OpenACC standard-
ization in the most time-consuming part, which was identified
using NVIDIA Nsight tool (figure 6). The routine getDistance
was selected with nearly 70% of the elapsed time, which per-
forms a loop over the polygons that are inside the leaf nodes
of an octree, checking the distance to each of the polygons.

Many difficulties came up during the process due to the
OpenACC was not yet mature for the C++ language, such as
the C++-style loops and polymorphism were not supported
by OpenACC. In spite of this, a version of the routine run-
ning on GPU was achieved. Some functions of the code from
the NVTX library from NVIDIA were embedded into this ver-
sion to aid in performance profiling and optimization. Using
the NVIDIA Nsight tool, the execution was traced and the res-
ulting timeline is showed in figure 7.

However, the result of this first GPU implementation was
not satisfactory, since the execution time increased from 8 s
to 46 s. The next step was to attempt manual management of
data transfers for two fields in the octree class: children and

7
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Figure 7. Trace of ERO2.0 using Nsight from NVIDIA that shows how implemented kernels are executed on GPUs.

Figure 8. Test to verify how affects the depth of the octree to the code performance. MaxPolygons is the maximum number of polygons
inside the octree leaf in order to stop subdividing, and maxLevel is the maximum level of subdivision after which to stop further subdivision
of the octree.

polygons. The result was an improvement from 46 s to 38 s.
Therefore, the works are still in progress in order to increase
this manual data management to other structures in the code.

With respect to themachines used for this work, we used the
CTE-POWER and M100 machines. Both machines are based
on two Power9 and four GPUs, NVIDIA V100. Although the
porting of the code was expected to performwithout problems,
due to the different software stacks, the same working code
on CTE-POWER could not compile on M100 and necessary
modifications were needed. After those changes, the code is
able to run on both kinds of pieces of hardware.

After the results using OpenACC standard were obtained,
our proposal to continue the development was to include
CUDA in the code and take profit of the Dynamic Parallelism
and a better C++ implementation in the recursive search in
the octree. However, as the octree depth can be switched in the
ERO2.0 configuration file, before any programming effort to
introduce CUDA in the code, we did a simple test to verify that
reducing the depth of the octree could improve the code per-
formance. Figure 8 shows that there is a significant improve-
ment when we decrease this parameter from the default value,
and therefore, this gives further motivation to continue the
work along the lines discussed above.

4.3. KNOSOS

KNOSOS (KiNetic Orbit-averaging Solver for Optimizing
Stellarators) [28, 29] is a gyrokinetic code that simulatesmulti-
species plasma in a 3D magnetic confinement. Each species
is solved on its own surface. KNOSOS is completely written
in Fortran90 and parallelized using MPI. Further, each sur-
face/species is independently handled by a singleMPI process.
The work on KNOSOS has focused on understanding the code
and analysing the possible solutions to improve its scalability
and performance. The starting point was profiling and tracing
the code using inputs provided by the developers, such as the
test case which consisted of 22 surfaces and 22MPI processes.
One of themain issues detectedwas the existence of an import-
ant load imbalance between MPI ranks for some inputs. Such
load imbalance seemed to be the product of the execution of
different amounts of iterations in one of the subroutines (Sb1)
betweenMPI ranks, which could oscillate between 1 and 2800
iterations.

After this discovery, we focused on and improving
a sequential execution of the KNOSOS code. Since the
MPI implementation of this code relies on launching
‘independent’ calculations, improving a sequential version
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would translate to an overall improvement in the MPI
version.

4.3.1. Sequential profiling. To identify the most time-
consuming parts of the code, we adapted the input files
received (which consisted of 22 ‘independent’ calculations)
to a new input that only contained a single calculation (con-
cretely, the first one). Once a working version with a single
MPI rank and input was obtained, basic profiling was per-
formed using Valgrind [30].

The profiling indicated that the Sb1 subroutine takes
up almost the totality of the execution time for this
case. And into this subroutine, the main part of its
execution time is used by the following subroutines:
FILL_MATRIX_PETSC (40.55%), INTEGRATE_G
(27.51%) and COEFFICIENTS_DKE (24.86%). Therefore,
the next step was focused on these functions (and their direct
callers/callees) to have an impact on the total execution time.
Although it is possible to study how to optimize a strictly
sequential version of this code (it will be done in the fol-
lowing steps of the optimization process), as a first step, the
decision was to try to parallelize the most intensive parts using
OpenMP.

4.3.2. Parallelization using OpenMP. Our first focus was the
relationship between the subroutines COEFFICIENTS_DKE
and BOUNCES, since BOUNCES was inheriting prac-
tically all of the execution time of its caller and it
takes up about 40% of the whole execution. As differ-
ent instances of the BOUNCES subroutine were identi-
fied as independents, i.e. they could be performed in par-
allel without producing data conflicts between OpenMP
threads, the below explained implementation of OpenMP
parallelization in COEFFICIENTS_DKE inside the file
low_collisionality.f90 was applied.

The addition of OpenMP in the main time-consuming Sb1
subroutines reduced the execution time from 15 s (sequential)
to 10 s (using 4 OpenMP threads). Seeing that some bene-
fits were achieved, the same approach was repeated with the
rest of the subroutines of Sb1. Since LAGRANGE does not
inherit all the burden of INTEGRATE_G and its contribution
to the total execution time is just about 8%, the OpenMP over-
headmakes this improvement negligible. Therefore, a possible
continuation path would be to identify and parallelize other
routines to achieve a better balance betweenMPI andOpenMP
parallelization.

4.3.3. Parallel profiling. The next step was to re-
investigate the problem by building a parallel profile with
Scalasca [31]. We noted that in the test executed, the
MPI process with rank 15 executed 2800 iterations of the
CALC_LOW_COLLISIONALITY subroutine while the average
iterations for the remaining processes for the same routine
was well below 100. Moreover, this process took 73.91 s to
execute the SOLVE_DKE_QNB_AMB subroutine as opposed to
the next maximum time of 18.14 s taken by MPI process with
rank 5.

KNOSOS solves a system of linear equations of the form
Ax=b, and after thoroughly scrutinizing the values in vector
b for MPI process with rank 15, we detected the presence of
a NaN at the third position of the vector. This error propag-
ated to the vector x when a standard built-in solver of PETSc
was called. After replacing the NaN value by a small random
value (chosen by consulting the values in vector b of other
MPI processes), we found that the total runtime of the applic-
ation reduced from 1941.66 s to 685.77 s, a 2.83x decrease in
time, and the abnormal iterations observed previously on MPI
process with rank 15 disappeared. The NaN error was traced
to a division by zero arithmetic exception, which was detec-
ted when the PETSc specific fp_trap flag was passed to the
program through the command line. As a result, we strongly
recommended to the developers that routines be added in
KNOSOS to detect NaN and Inf values, especially in the vec-
tors of PETSc.

4.3.4. Vectorization. One of the most time-consuming
routines identified in the KNOSOS application was
CALCB_DEL, which is executed multiple times under top-level
subroutines. We found a time-intensive loop in this routine
which the compiler refused to vectorize due to a forward
dependency. We broke the forward dependency to achieve
vectorization after introducing several temporary variables
and restructuring the loop, and the outcome was a reduction
of the time for a single instance of the subroutine CALCB_DEL
from 126.51 s to 47.28 s, while the total run-time of KNOSOS
decreased from 685.77 s to 551.22 s, i.e. a speed-up achieved
of 2.67x and 1.24x respectively.

In our analysis, we also noticed that the compiler (Intel)
was using the XMM/YMM registers for vectorization. Since MN4
supports AVX-512 operations, we set the compile time flag
-qopt-zmm-usage=high to use the 512-bit registers for vec-
torization. Further, as KNOSOS iswritten in Fortran, we added
the compilation flag -align array64byte to align the data
to a 64-byte boundary (except for the data in COMMON block).
Along with the compile time flags, we used the Intel spe-
cific vector aligned directive at appropriate positions in
the code. All these additions further reduced the run-time of
CALCB_DEL from 47.28 s to 35.16 s, and the total run-time
of KNOSOS dropped from 551.22 s to 514.02 s, i.e. an accu-
mulated speed-up achieved through vectorization of 3.59x and
1.33x respectively.

4.3.5. MPI parallelization. As mentioned earlier, KNOSOS
involves solving multiple species on their respective sur-
faces using independent MPI processes. Thus, if we execute
KNOSOS with 22 surfaces and more than 22 MPI processes,
only the first 22 MPI processes participate in the execution
while the remaining processes remain idle. To divide a sur-
face among multiple MPI processes, we created a mapping
rank(numproc,ns) such that if rank(i,j)=1, then MPI
rank i-1 participates in solving the surface number j. Further,
an MPI process can only be assigned to a single surface, while
a surface can be associated with multiple MPI processes. We
created routines to replicate the work of a particular surface on
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Table 3. Average application timing (per process) when multiple
processes are assigned to surfaces using a Round–Robin and
Compact scheme.

Processes Round–Robin (s) Compact (s)

22 25.98 24.71
44 24.48 21.48
48 22.31 23.35
66 19.68 21.95
88 19.13 19.05
96 19.47 21.14

all the MPI processes assigned to that surface. The MPI pro-
cesses are assigned to surfaces using two different schemes:

• Round-Robin (RR): We assign the first process to the first
surface, the second process to the second surface and so on.
If processes are remaining, we restart the assignment with
the first surface.

• Compact (CO): Assuming that the total processes (tp)
are greater than the total surfaces (ts), we assign tp

ts
MPI processes to each surface and if processes are
remaining i.e. tp mod ts ̸= 0, we again assign one pro-
cess each to the surfaces in order till the processes are
exhausted.

To identify the processes associated with a surface, the pro-
cesses were grouped in a separate SURFACE_COMM_WORLD
MPI communicator corresponding to each surface. It can
be noted that the MPI processes associated with a par-
ticular surface did not distribute but replicated the entire
work associated with that surface. In consultation with
the developers, it was decided to use these MPI pro-
cesses to divide the work done in a subroutine named
COEFFICIENTS_DKE, which took about 33% in the vector-
ized version. A new version COEFFICIENTS_DKE_NEW of the
aforementioned subroutine was written, allowing the MPI
processes associated with a particular surface to work on
different chunks of data (portions of arrays). The decision
to call the new version COEFFICIENTS_DKE_NEW or the
old version COEFFICIENTS_DKE was based on whether the
number of MPI processes in the SURFACE_COMM_WORLD
was greater than one or not, respectively. After the
processing of data, an MPI_Allgatherv involving 12
arrays was needed to gather all portions of the arrays on
the root process of each of the SURFACE_COMM_WORLD
communicators.

Table 3 shows that the best KNOSOS runtime using both
distribution schemes was obtained with 88 MPI processes. A
reduction of 26.37% in the case of RR and 22.90% in the
case of CO can be seen using 88 processes (compared to the
baseline of 22 processes). At a subroutine level, the subroutine
COEFFICIENTS_DKE took approximately 5.43 s per process in
the 22 MPI process case and 1.57 s per process in the 88 pro-
cess case. This amounts to a speed-up of≈3.45 - a value close
to the ideal value of 4. In summary, we were able to reduce the
total run-time of the application by approximately 51% with

Vectorization, additional compiler options and our MPI paral-
lelization scheme.

5. Conclusions and discussion

In this brief contribution, some of the procedures and activit-
ies of BSC-ACH have been presented. We describe the main
tools used to perform the analysis tasks and different strategies
adopted to optimize the codes of the fusion community.

We chose three codes in different stages of the work to
show three typical examples of the interaction between the
ACH and code developers. For one of the cases, KNOSOS,
the final obtained results were good enough for the code
authors at that stage of the development. In the case of the
SPICE2 code, the improvement introduced in the code was
in line with the developers’ requirements. These results are
not as good as we expected, but this leads to a new round
of discussions between the ACH and SPICE developers, in
order to try new improvement possibilities in a new cycle
of work. Finally, the ERO2.0 case is an ongoing work, and
we present some details on how bottlenecks were detected.
However, it is necessary to clarify that similar work was done
over the KNOSOS and SPICE2 codes to detect bottlenecks
and workflow. Furthermore, ERO2.0 demands efforts for port-
ing it to GPUs, a task that we also need to do over other
codes in the ACH project, and this is why we selected this
code as an example since it is in a more advanced stage in
our ACH.

It is necessary to clarify thatmany of the codeswe arework-
ing with have a long history of development, and hundreds
of hours of work by their respective developers. This ensures
that the results obtained with these codes are relevant from
the point of view of the physics they simulate. However, it
also implies considerable prior optimization work. As a con-
sequence, it is not easy to obtain drastic changes in its com-
putational behavior, and many times working for months on
a code results ‘only’ an appreciable but not decisive increase
in its performance. However, the way to obtain a code with
a professional character is to combine the work of different
specialists, who test the code under various conditions and on
different machines with different configurations. This ensures
portability, good behavior, and debugging of bugs that are only
discovered during these tasks.

In this sense, the ACHs carry out a task that is not only
beneficial for the codes that are involved, but also necessary to
bring these codes to standardization that ensures their continu-
ity in current machines and, above all, also to that the fusion
community will have access to in the future.
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