
1

CUDA Tools for Profiling and
Debugging
Markus Hrywniak, Senior DevTech Compute, April 2024

2

Session outline

Goals

• Use compute-sanitizer to automatically detect correctness issues (invalid memory accesses)

• Use cuda-gdb to manually and interactively debug a CUDA program

• Use Nsight Systems to learn the basic workflow to optimize performance of GPU programs

Debugging Correctness, then Debugging Performance

3

Debugging Correctness: Best Practices
Before you start

• Crashes are "nice" – the stacktrace often points to the bug

• Prerequisite: Compile flags
• While developing, always use -g -lineinfo
• Use -g -G for manual debugging

• Specific flags for compilers/languages (e.g. gfortran): -fcheck=bounds

• Memory corruption: Out-of-bounds accesses may or may not crash
• compute-sanitizer: Automate finding these errrors

• Other issues: Manual debugging
• cuda-gdb: Command-line debugger, GPU extensions

• CUDA_LAUNCH_BLOCKING=1 forces synchronous kernel launches

NVCC compile flags for debugging

-g Embed symbol info for host code

-lineinfo Generate line correlation info for device code

-G Device debug – slow

4

compute-sanitizer
Functional correctness checking suite for GPU

https://docs.nvidia.com/compute-sanitizer/ComputeSanitizer/

• compute-sanitizer is a collection of tools

• memcheck (default) tool comparable to Valgrind’s memcheck.

• Other tools include
• racecheck: shared memory data access hazard detector
• initcheck: uninitialized device global memory access detector
• synccheck: identify whether a CUDA application is correctly using synchronization primitives

• Main usage: Auto-detect invalid GPU code and shortcut debugging effort
• Directly pinpoint source code line/addresses, access size

• Leak-checking for device allocations - forgot to call cudaFree()?
• --leak-check full

• Filtering and other capabilities. Two commonly useful switches:
• --log-file output.log

• Separates (potentially verbose) output into separate file

• --kernel-regex kns=some_substring
• Only checks kernels containing "some_substring"

https://docs.nvidia.com/compute-sanitizer/ComputeSanitizer/
https://www.valgrind.org/docs/manual/mc-manual.html

5

compute-sanitizer
Example launch

• Run it: srun --pty compute-sanitizer ./set_vector

• Abbreviated output:

========= COMPUTE-SANITIZER

========= Invalid __global__ write of size 4 bytes
========= at 0xc0 in
/p/home/jusers/hrywniak1/juwels/GPU-Course/task1/set_vector.cu:20:set(int,float*,float)
========= by thread (0,0,0) in block (0,0,0)
========= Address 0x2afe49a02000 is out of bounds
========= Saved host backtrace up to driver entry point at kernel launch time
[....]

========= Target application returned an error
========= ERROR SUMMARY: 1025 errors

• Actual output can be very long, if many GPU threads produce (similar) errors.

6

Task 1
Use compute-sanitizer to automatically identify an error

• Location of code: 2-Tools/exercises/tasks/task1

• Steps (see also Instructions.ipynb)
• Fix set-vector.cu!
• Use compute-sanitizer to locate error in set-vector.cu, and fix it
• compute-sanitizer should run without errors!
• Build: make
• Run: make run / make memcheck

7

cuda-gdb
Extends GDB for CUDA applications

https://docs.nvidia.com/cuda/cuda-gdb/index.html

• "Symbolic Debugger" – leaverage debug symbols to correlate execution issues with original source code

• Interactive/manual tool, with useful shortcuts
• https://docs.nvidia.com/cuda/cuda-gdb/index.html#automatic-error-checking

• Textual, like a shell for debugging – Not the easiest to master, but very powerful, and works everywhere

• Basic workflow for segfaults
• Crashing app invoked via

• ./my_app_name my_app_arg another_arg
• becomes

• cuda-gdb --args ./my_app_name my_app_arg another_arg
• Shows you the debugger shell prompt: (cuda-gdb)

• Launch program with "run"

• Identify the segfault – Done J

• Advanced workflow to step through execution, understand program flow, inspect and modify variables,...

https://docs.nvidia.com/cuda/cuda-gdb/index.html
https://docs.nvidia.com/cuda/cuda-gdb/index.html

8

cuda-gdb Cheat Sheet
(doubles as a GDB cheat sheet)

• Most commands have abbreviations
• continue à cont, break à b, info à i, backtrace à bt, ...
• cuda thread 4 à cu th 4

• Use TAB completion to help you remember command names

• Use help and apropos to avoid a round-trip to the browser (try: apropos cuda.*api)

run Begin progam execution under debugger

backtrace Print call stack (e.g. after an exception)

list List source code around current location

print <var> Print contents of <var>, e.g. "print i" to print the loop counter i

set var <var>=<value> Set value of <var> to <value>, e.g. "set var i=42"

break 10
break foo.cpp:10
break my_func

Set breakpoint (suspend execution) on: line 10 in current file
... line 10 in file foo.cpp
... function my_func in any file

set cuda api_failures stop Break on any CUDA API failures (e.g. launch errors)

continue / next / step Resume execution (after hitting breakpoint) until next: break / line /
instruction

info locals Print all local variables in current scope

info cuda threads Print current thread configuration

cuda thread 15 Switch focus to thread (here: 15)

9

cuda-gdb Examples
Launch

• Launching the application inside the debugger – like a shell

$ cuda-gdb --args ./gpu-print # The same works on pure CPU using plain gdb.
[...]
For help, type "help".
Type "apropos word" to search for commands related to "word"...
Reading symbols from ./gpu_print...
(cuda-gdb)

• Type run to actually launch the program itself

(cuda-gdb) run
Starting program: ./gpu_print
[Detaching after fork from child process 7437]
[New Thread 0x15554ca60000 (LWP 7449)]
[New Thread 0x15554c85f000 (LWP 7450)]
blockIdx.x = 1, threadIdx.x = 0, i = 0
[...]
(cuda-gdb) # program finished running, debugger waiting for new instructions

10

The Most Essential Command
In case of segfault, remember the backtrace

• If your app crashes or terminates unexpectedly, the debugger can very often tell you the exact location of the issue
• Both in CPU and GPU code

$ cuda-gdb --args ./gpu-print

(cuda-gdb) run

[...]

CUDA Exception: Warp Illegal Address
The exception was triggered at PC 0xacbc90 (gpu_print.cu:19)

Thread 1 "gpu_print" received signal CUDA_EXCEPTION_14, Warp Illegal Address.
[Switching focus to CUDA kernel 0, grid 1, block (0,0,0), thread (0,0,0), device 0,sm 0,warp
0,lane 0]
0x0000000000acbca0 in print_test<<<(2,1,1),(32,1,1)>>> () at gpu_print.cu:19
19 double x = *(double*)nullptr;
(cuda-gdb) bt # "backtrace"
#0 0x0000000000acbca0 in print_test<<<(2,1,1),(32,1,1)>>> () at gpu_print.cu:19

• Backtrace tries to print all stack frames (i.e. function calls) with line information up to the current location
• Equally useful when manually debugging or using breakpoints
• Some errors can corrupt the stack, making the backtrace less useful

11

Breakpoints
Interrupting execution to inspect program state

• Retry, but before launch, set a breakpoint that will pause execution

• Reminder: You need –G for meaningful kernel debugging

(cuda-gdb) l print_test # show source of function
[...]
(cuda-gdb) break 18
Breakpoint 1 at 0x403fe6: file .../exercises/tasks/task2/gpu_print.cu, line 20.
(cuda-gdb) run
Starting program: ./gpu_print
[...]
[Switching focus to CUDA kernel 0, grid 1, block (0,0,0), thread (0,0,0), device 0,sm 0,warp 0,lane 0]
Thread 1 "gpu_print" hit Breakpoint 1, print_test<<<(2,1,1),(32,1,1)>>> () at gpu_print.cu:18
18 int i = 0;
(cuda-gdb) print i
$1 = <optimized out>
(cuda-gdb) next
19 printf("blockIdx.x = %d, threadIdx.x = %d, i = %d\n", blockIdx.x, threadIdx.x, i);
(cuda-gdb) print i
$2 = 0
(cuda-gdb) continue # resume execution

• Why "optimized out"?

12

Breakpoints and Program State
Changing the course of execution

• Breakpoints can be deleted again

(cuda-gdb) i brea # "info breakpoints"
Num Type Disp Enb Address What
1 breakpoint keep y 0x0000000000acbf60 in print_test() at gpu_print.cu:18
 breakpoint already hit 1 time
(cuda-gdb) d 1 # "delete 1"
(cuda-gdb) i brea
No breakpoints or watchpoints.

• Breakpoints can be conditional, also: watchpoints (see help)

• Actively change state by setting variables
• (cuda-gdb) set var my_variable = 11

• Actively change control flow by calling functions
• (cuda-gdb) call my_print_func("debugging message")

• Inspect memory and variables. Assume we have const char* s = "my_str"
• (cuda-gdb) print s # prints "my_str"
(cuda-gdb) print s[0]@3 # prints "my_"
(cuda-gdb) x/5c s # prints next 5 values following address s interpreted as chars (check help)

• 0x4c54f0: 109 'm' 121 'y' 95 '_' 115 's' 116 't'

13

GPU-Specifics
New commands in cuda-gdb

• GPU-specifics: Setting the focus

(cuda-gdb) i cuda threads
 BlockIdx ThreadIdx To BlockIdx ThreadIdx Count Virtual PC Filename Line
Kernel 0
* (0,0,0) (0,0,0) (0,0,0) (31,0,0) 32 0x0000000000acbf90 gpu_print.cu 19
 (1,0,0) (0,0,0) (1,0,0) (31,0,0) 32 0x0000000000acbf60 gpu_print.cu 18
(cuda-gdb) cuda thread
thread (0,0,0)
(cuda-gdb) cuda thread 10
[Switching focus to CUDA kernel 0, grid 1, block (0,0,0), thread (10,0,0), device 0,sm 0,warp 0,lane
10]
19 printf("blockIdx.x = %d, threadIdx.x = %d, i = %d\n", blockIdx.x, threadIdx.x, i);

• Focus can be set to specific blocks, SMs, devices, ... – help cuda
• Hardware and software abstractions (e.g. blocks vs. SMs)

• Options: Try (cuda-gdb) set cuda<ENTER> for a list
• Two commonly-used options: api_failures and launch_blocking

15

IDE Integration
Beyond shells and text-based user interfaces

• Why use an integrated development environment (IDE)?
• Source code editor with CUDA C/C++ highlighting
• Project / file management with integration of version control
• Build system
• Graphical interface for debugging heterogeneous applications

• On Windows: Nsight Visual Studio Edition
• https://developer.nvidia.com/nsight-visual-studio-edition/

• Nsight Visual Studio Code Edition
• https://developer.nvidia.com/nsight-visual-studio-code-edition/

• Eclipse : https://docs.nvidia.com/cuda/nsight-eclipse-plugins-guide

• Recommended: https://github.com/NVIDIA/nsight-training

https://developer.nvidia.com/nsight-visual-studio-edition/
https://developer.nvidia.com/nsight-visual-studio-code-edition/
https://docs.nvidia.com/cuda/nsight-eclipse-plugins-guide/index.html
https://github.com/NVIDIA/nsight-training

16

Task 2
Change program execution on-the-fly with cuda-gdb

• Location of code: 2-Tools/exercises/tasks/task2

• Steps (see also Instructions.ipynb)
• Let thread 4 from the first block (block 0) print 42 instead of 0.

Do not change the source code!
Do use cuda-gdb commands and breakpoints.

• Build and run once to see the standard output:
make run

• Run and debug interactively on a compute node:
1. eval $JSC_SUBMIT_CMD bash –i
2. cuda-gdb --args ...

• Hints:
• Use the cheat sheet: breakpoints, listing source, setting variable values, changing the active cuda thread…
• If you get stuck, see the solutions directory for the commands to feed into cuda-gdb

• The Makefile has debug-cuda-gdb and debug-cuda-gdb-solution commands you can also try

This gets you an
interactive shell
on the compute

node

17

Write Debuggable Software
A case for modularity, and proper test cases

• Think about interfaces in your code: Which parts must depend on each other, etc.
• Example: BLAS, linear algebra routines

• Think about structure and architecture („the big picture“)

• Don‘t go overboard: „I read this book, we need 100% test coverage“, etc.
• For many research codes that would be overkill

• “Everything should be made as simple as possible, but no simpler.“

• Badly structured legacy code slows you down as well, as it resists change
• Today‘s code is tomorrow‘s legacy
• Strike a balance, avoid full rewrites. Code encapsulates hard-earned bug fixes and knowledge

• Representative test cases
• Contain the correct science, walk the code paths
• But run quickly, best on a single process, should run on a single node
• Some (but not all) tests at full scale

18

Debugging Performance
Why you must use profilers

• Paraphrasing Donald Knuth:
• Don‘t overoptimize, but meta-optimize your own time by using tools to focus on relevant parts

• Do not trust your gut instinct – very often very misleading
• Easy to waste a lot of time chasing the "perceived" issue

• Getting the same information, you end up reimplementing your own profiler

• Iterative workflow

• Different kinds of measurement tools, different tradeoffs
• Instrumenting/Sampling
• Profiling/Tracing
• multi-process, single-process, kernel-level

• Focus on GPU and system-level: Nsight Systems
• Continue with kernel analysis in Nsight Compute (tomorrow)

1. Assess
• Identify Performance

Limiter
• Analyze Profile
• Find Indicators

2. Parallelize3. Optimize

Build Knowledge

4. Deploy
and Test

http://wiki.c2.com/?PrematureOptimization

19

The Nsight Suite Components
How the pieces fit together

§ Nsight Systems: Coarse-grained, whole-application

§ Nsight Compute: Fine-grained, kernel-level

§ NVTX: Support and structure across tools

§ Main purpose: Performance optimization
§ But at their core, advanced measurement tools

Slide 19

20

Interlude - Maximum achievable speedup
Amdahl‘s law

• Amdahl‘s law states overall speedup s given the parallel fraction p of code and number of processes 𝑁

𝒔 =
1

1 − 𝑝 + 𝑝
𝑁
<

1
1 − 𝑝

• Limited by serial fraction, even for 𝑁 → ∞

• Example for 𝑝 = 30%

• Generally applicable on any level
• e.g. also valid for per-method speedups

7

7

7

7

0,75

1

1,5

3

0 2 4 6 8 10 12

N=4

N=3

N=2

N=1

Using 1 to 4 processes, total runtime

Serial part Parallel part

21

Nsight Systems GUI
Main timeline view, Events View

22

Nsight Compute GUI
First steps in kernel analysis - Understanding the initial limiter

• GPU "Speed of Light Throughput"
• SOL = theoretical peak

• "Breakdown" tables
• DRAM: Cycles Active

• Tooltips

• Rules point to next steps

Slide 22

23

Where Should I Start Profiling?
And which tool to use?

• Always tradeoff between slightly conflicting goals
• Performance; Maintainability; Effort

• Start with a system-level view à Nsight Systems

• Ensure you understand your timeline, and where the GPU is active/inactive
• where initialization happens
• how the time-% shifts for different relevant workloads

• Take the low-hanging fruit!

• Don‘t shy away from kernel-level optimization, but ensure you understand impact
• Again, Amdahl‘s: Hypothetically, optimized kernel takes 0 s, how large is whole-program speedup?

• General guidelines – if your whole timeline is a single kernel, by all means start optimizing it first!
• Performance Optimization session has more detail on Nsight Compute

24

System-level Profiling with Nsight Systems

• Global timeline view
• CUDA HW: streams, kernels, memory

• Different traces, e.g. CUDA, MPI
• correlations API <-> HW

• Stack samples
• bottom-up, top-down for CPU code

• GPU metrics

• Events View
• Expert Systems

• looks at single process (tree)
• correlate multi-process reports into

single timeline

25

Nsight Systems Basic Workflow
Navigating the timeline and finding interesting areas

26

Launching the Profilers
How-to on the JSC systems

• module load GCC Nsight-Systems Nsight-Compute

• Nsight Systems
• nsys (CLI) and nsys-ui (GUI)
• Record timeline:
nsys profile -o scale_um_baseline ./scale_vector_um

• Always specify a meaningful output file name. Auto-timestamping: -o $(date +%Y%m%d_%H-%M-%S)__my_app

• Nsight Compute
• ncu (CLI) and ncu-ui (GUI)
• Record all kernels, or (here) select specific instance:
ncu --set full -k scale -s 0 -c 1 -f -o scale_kernel_baseline ./scale_vector_um

• Nsight Systems can help generate the –s/-c arguments:

27

Task 3
Analyze and profile scale_vector_um

• Location of code: 2-Tools/exercises/tasks/task3

• See Instructions.ipynb

• Use the command line tools to gather a profile
• Then use the GUI to view it: X-Forwarding, or Xpra (described in the .ipynb)

• Objective: Get to know the tools and basic workflow. Check the .ipynb and the Makefile:
• Main Goal: Use Nsight Systems to write scale_vector_um’s timeline to file and open the result in the GUI
• Try to determine:

• Kernel runtime
• CUDA API operations and their duration

• Optional Goal: Use Nsight Compute to profile a specific kernel on the command line, then write the output to a file and open it
in the GUI

• What are the limiters of the kernel?

28

A first (I)Nsight
Recording with the CLI

• Use the command line
• srun nsys profile --trace=cuda,nvtx,mpi --output=my_report.%q{SLURM_PROCID} ./jacobi -niter 10

• Inspect results: Open the report file in the GUI
• Also possible to get details on command line
• Either add --stats to profile command line, or: nsys stats --help

• Runs set of reports on command line, customizable (sqlite + Python):
• Useful to check validity of profile, identify important kernels

Running [.../reports/gpukernsum.py jacobi_metrics_more-nvtx.0.sqlite]...

Time(%) Total Time (ns) Instances Avg (ns) Med (ns) Min (ns) Max (ns) StdDev (ns) Name
------- --------------- --------- --------- --------- -------- -------- ----------- ---------------------

99.9 36750359 20 1837518.0 1838466.5 622945 3055044 1245121.7 void jacobi_kernel
0.1 22816 2 11408.0 11408.0 7520 15296 5498.5 initialize_boundaries

29

Adding Some Color
Code annotation with NVTX

• Same section of timeline as before
• Events view: Quick navigation

• Like manual timing, only less work

• Nesting

• Correlation, filtering

30

Adding NVTX
Simple range-based API

• #include "nvtx3/nvToolsExt.h"
• NVTX v3 is header-only, needs just –ldl
• C++ and Python APIs

• Fortran: NVHPC compilers include module
• Just use nvtx and –lnvhpcwrapnvtx
• Other compilers: See blog posts linked below

• Definitely: Include PUSH/POP macros (see links below)

PUSH_RANGE(name, color_idx)

• Sprinkle them strategically through code
• Use hierarchically: Nest ranges

• Not shown: Advanced usage (domains, ...)

• Similar range-based annotations exist for other tools
• e.g. SCOREP_USER_REGION_BEGIN

int main(int argc, char** argv) {
PUSH_RANGE("main", 0)
PUSH_RANGE("init", 1)
do_initialization();
POP_RANGE
/* ... */
PUSH_RANGE("computation", 2)
jacobi_kernel<<</* ... */, compute_stream>>>(...);
cudaStreamSynchronize(compute_stream);
POP_RANGE
/* ... */
POP_RANGE

}

https://github.com/NVIDIA/NVTX and https://nvidia.github.io/NVTX/#how-do-i-use-nvtx-in-my-code
Includehttps://docs.nvidia.com/hpc-sdk/compilers/fortran-cuda-interfaces/index.html#cfnvtx-runtime
https://developer.nvidia.com/blog/cuda-pro-tip-generate-custom-application-profile-timelines-nvtx/
https://developer.nvidia.com/blog/customize-cuda-fortran-profiling-nvtx/

https://docs.nvidia.com/hpc-sdk/compilers/fortran-cuda-interfaces/index.html
https://scorepci.pages.jsc.fz-juelich.de/scorep-pipelines/docs/scorep-6.0/html/group__SCOREP__User.html
https://github.com/NVIDIA/NVTX
https://nvidia.github.io/NVTX/
https://developer.nvidia.com/blog/cuda-pro-tip-generate-custom-application-profile-timelines-nvtx/
https://developer.nvidia.com/blog/customize-cuda-fortran-profiling-nvtx/

31

Nsight Systems Workflow With NVTX
Repeating the analysis

32

GPU Metrics in Nsight Systems
...and other traces you can activate

• Valuable low-overhead insight into HW
usage:

• SM instructions
• DRAM Bandwidth, PCIe Bandwith

(GPUDirect)

• Also: Memory usage, Page Faults (higher
overhead)

• CUDA Programming guide: Unified Memory
Programming

• Can save kernel-level profiling effort!

• nsys profile
--gpu-metrics-device=0
--cuda-memory-usage=true
--cuda-um-cpu-page-faults=true
--cuda-um-gpu-page-faults=true
./app

...

https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html

33

Other Profilers
Large-scale MPI profiling, custom tooling, and other uses

• Performance counters available via CUPTI (CUDA
Profiling Tools Interface)

• Build your own profiler (integration):
https://docs.nvidia.com/cupti/index.html

• Score-P: Measurement infrastracture, can record
CPU/GPU

• Cube: Display hierarchical info collected via Score-P

• Vampir: Analyze application traces, discover MPI issues

• ... and many more

https://docs.nvidia.com/cupti/index.html

34

Summary

• Overview of GPU tools
• Debugging with compute-sanitizer and cuda-gdb
• Whole-program optimization with Nsight Systems
• Individual kernels with Nsight Compute

• Profiler usage a "must" for performance optimization
• ...puts the P in HPC

• Workflow is equally important
• Increase GPU utilization („fill whitespace“)
• Focus on top kernels, find their limiters, fix them
• Implement and repeat

Questions? mhrywniak@nvidia.com

mailto:mhrywniak@nvidia.com

35

Further Material

• GTC on-demand talks
• What, Where, and Why? Use CUDA Developer Tools to Detect, Locate, and Explain Bugs and Bottlenecks (s41493, GTC 2022)
• Tuning GPU Network and Memory Usage in Apache Spark (s31566, GTC 2022)

• Documentation for cuda-gdb, compute-sanitizer, Nsight Systems and Nsight Compute
• In particular, the Kernel Profiling guide (installed with Nsight Compute, or online):

https://docs.nvidia.com/nsight-compute/ProfilingGuide/index.html

• GTC labs from Nsight teams: https://github.com/NVIDIA/nsight-training

• Open Hackathons material, e.g., https://github.com/openhackathons-org/nways_accelerated_programming

https://www.nvidia.com/en-us/on-demand/session/gtcspring22-s41493/
https://www.nvidia.com/en-us/on-demand/session/gtcspring21-s31566
https://docs.nvidia.com/cuda/cuda-gdb/index.html
https://docs.nvidia.com/cuda/compute-sanitizer/
https://docs.nvidia.com/nsight-systems/
https://docs.nvidia.com/nsight-compute/index.html
https://docs.nvidia.com/nsight-compute/ProfilingGuide/index.html
https://github.com/NVIDIA/nsight-training
https://github.com/openhackathons-org/nways_accelerated_programming

36

