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CUDA MATRIX MULTIPLICATION
Distribution of work

A C

B

y

x

Crow ,col =
n∑

i=1
Arow ,i ∗ Bi,col

n × n threads needed for
matrix C of size n × n

Thread (x,y) computes result
element Cy ,x using row y of A
and column x of B
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CUDA MATRIX MULTIPLICATION
Execution Grid Layout

y

x

Thread Block

Naive idea: One big thread
block to cover all result
elements
Using only one block
decreases performance (due to
reduced device occupancy)
Blocks are limited in size

→ Several blocks needed to cover
the full matrix C
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CUDA MATRIX MULTIPLICATION
Execution Grid Layout

y

x

TB (0, 0) TB (1, 0) TB (k-1, 0)

TB (0, 1) TB (1, 1) TB (k-1, 1)

TB (0, k-1) TB (1, k-1) TB (k-1, k-1)

.

.

.

...

...

...

Thread (0, 0) Thread (m-1, 0)

Thread (m - 1, m - 1)Thread (0, m - 1)

Cover C of size n × n with 2D
kernel execution grid with k × k
thread blocks (TB).
Fixed block size m ×m.

Optimal value for m
architecture-dependant.

k =

{
n/m if n divisible by k
n/m + 1 else

Check if threads are out of
bounds.
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CUDA MATRIX MULTIPLICATION
Execution grid layout

y

x

Block (x, y)

Thread (0, 0)

Thread ( x * m + 0,

 y * m + 0)

Thread (1, 0)

Thread ( x * m + 1,

 y * m + 0)

Thread (m - 1, 0)

Thread ( x * m + m - 1,

 y * m + 0)

Thread (0, m - 1)

Thread ( x * m + 0,

 y * m + m - 1)

Thread (1, m-1)

Thread ( x * m + 1,

 y * m + m - 1)

Thread (m - 1, m - 1)

Thread ( x * m + m - 1,

 y * m + m - 1)

Threads can be addressed via local
index (block internal) and global index
(full grid)
Keywords in kernel to get thread
information:

blockIdx.x blockIdx.y blockIdx.z

threadIdx.x threadIdx.y threadIdx.z

blockDim.x blockDim.y blockDim.z

gridDim.x gridDim.y gridDim.z
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RECAP: GRID AND BLOCK SIZES
See day 1 material

Define block sizes, grid sizes and launch kernel from host:

Example workflow

int Nx = 1000, Ny = 1000;

dim3 blockDim(16, 16); //store 2D configuration in blockDim

int gx = (Nx % blockDim.x == 0) ? Nx / blockDim.x : Nx / blockDim.x + 1;

int gy = (Ny % blockDim.y == 0) ? Ny / blockDim.y : Ny / blockDim.y + 1;

dim3 gridDim(gx, gy); //store 2D configuration in gridDim

kernel<<<gridDim, blockDim>>>(); //launch kernel
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CUDA MATRIX MULTIPLICATION
Kernel: Matrix Multiplication
__global__ void mm_kernel(float* A, float* B, float* C, int n) {

int col = blockIdx.x * blockDim.x + threadIdx.x;

int row = blockIdx.y * blockDim.y + threadIdx.y;

if (row < n && col < n) {

for (int i = 0; i < n; ++i) {

C[row*n + col] += A[row*n + i] * B[i*n + col];

}

}

}

mm_kernel <<< gridDim, blockDim >>> (a, b, c, n);
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EXERCISE
Simple matrix multiplication with Cuda

Detailed instructions
.../exercises/tasks/Cuda MM simple/Instructions.ipynb

1 Implement CUDA Matrix Multiplication
C[row*n + col] += A[row*n + i] * B[i*n + col];

2 Instead of writing to array C, write to local variable
cvalue, write to C later.
cvalue += A[row*n + i] * B[i*n + col];
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PERFORMANCE CONSIDERATIONS
Measured numbers

JUWELS Cluster: 1 x V100 (theoretical peak: 7 TFlops/s DP)
JUWELS Booster: 1 x A100 (theoretical peak: 9.7 TFlops/s DP, 19.5 with TC)

matrix size 64 1024 10240 64 1024 10240
JW Cluster [GFlops/s)] JW Booster [GFlops/s)]

with cvalue 1.2 319 1146 1.1 286.2 1587.1
direct write 1.02 196 391 0.9 198.3 562.2
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PERFORMANCE CONSIDERATIONS
Profiler hints for simple matrix multiplication

Figure: Kernel profiling in Nsight Compute

NVIDIA Nsight Systems gives overview timeline.
NVIDIA Nsight Compute analyzes kernels.

→ useful hints, hotspots, potential performance issues
indicates very low compute utilization
dgemm kernel is memory-bound, waits for data
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PERFORMANCE CONSIDERATIONS
GPU memory layout

. . .

Streaming Multiprocessor

L1/Shared (64 KiB)

Block 0

. . .thread 0

Registers

thread 1

Registers

Streaming Multiprocessor

L1/Shared (64 KiB)

Block x

. . .thread 0

Registers

thread 1

Registers

L2 Cache

Global Memory
array C located in global
memory
cvalue located in registers on
SM: faster write operations
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PERFORMANCE CONSIDERATIONS
Profiler hints for simple matrix multiplication

Using cvalue reduces the access to the global memory
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PERFORMANCE CONSIDERATIONS
GPU memory layout (schematics)

. . .

Streaming Multiprocessor

L1/Shared (64 KiB)

Block 0

. . .thread 0

Registers

thread 1

Registers

Streaming Multiprocessor

L1/Shared (64 KiB)

Block x

. . .thread 0

Registers

thread 1

Registers

L2 Cache

Global Memory

How to make use of Shared Memory?

matrix array C located in global
memory
cvalue located in registers on
SM: faster write operations

Member of the Helmholtz Association April 09, 2024 Slide 12 22



SHARED MEMORY
How to use inside your kernels

Allocate shared memory

// allocate vector in shared memory

__shared__ float[size];

// allocate 2D array

__shared__ float Msub[BLOCK_SIZE][BLOCK_SIZE];

Copy data from globalto shared memory

Msub[threadIdx.y][threadIdx.x] = M[threadIdx.y * width + threadIdx.x]

Remember: only shared between threads within the same thread block !

Member of the Helmholtz Association April 09, 2024 Slide 13 22



SHARED MEMORY

A C

B

y

x

Shared memory is limited, the whole matrices do not fit in all at once.

How can we rewrite Matrix Multiplication, s.t. data in shared memory is reused efficiently?

Solution: Tiling (very common in all matrix-based algorithms)
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BLOCK MATRIX EXAMPLE
2× 2 blocks

A matrix can be divided into blocks:

A =


1 2
3 4

5 6
7 8

9 10
11 12

13 14
15 16

 =

[
A11 A12
A21 A22

]

If block sizes align, matrix multiplication can be rewritten in block form:
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BLOCK MATRIX EXAMPLE
2× 2 blocks

A matrix can be divided into blocks:

A =


1 2
3 4

5 6
7 8

9 10
11 12

13 14
15 16

 =

[
A11 A12
A21 A22

]

If block sizes align, matrix multiplication can be rewritten in block form:[
A11 A12
A21 A22

]
·
[
B11 B12
B21 B22

]
=

[
A11B11 + A12B21 A11B12 + A12B22
A21B11 + A22B21 A21B12 + A22B22

]
The whole matrices do not fit into shared memory, but we tile the matrix so that blocks do!
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BLOCK MATRIX EXAMPLE
2× 2 blocks, using shared memory

input matrix A result matrix C

input matrix B

shared memory

We map: CUDA Thread Block = Matrix Block.
One block computes

C11 = A11B11 + A12B21

Implementation:
1 Load A11, B11 into shared memory
2 C11 ← A11B11

3 Load A12, B21 into shared memory
4 C11 ← C11 + A11B21
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BLOCK MATRIX MULTIPLICATION
Workflow, k × k blocks

Shared Memory

Each thread (global index (x , y), local index
(s, t) in block (u, v)) does:

Cy,x ← 0
for I = 1 to k do

Copy input data Avi , Biu to shared memory (one
element per thread)

Compute value (t , s) in AviBiu .
Add this value to Cy,x

end for
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BLOCK MATRIX MULTIPLICATION
Thread synchronization

Shared Memory

Thread synchronization

Threads within a block may not be
completely in synch.

→ Synchronization is needed!

Synchronize threads within a block

syncthreads ();
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BLOCK MATRIX MULTIPLICATION
Workflow, k × k blocks

Shared Memory

Each thread (global index (x , y), local index (s, t)
in block (u, v)) does:

Cy,x ← 0
for i = 1 to k do

Copy input data Avi , Biu to shared memory
(one element per thread)

Wait until all threads in block have copied their data
Compute value (t , s) in AviBiu .
Add this value to Cy,x

Wait until all threads in block have finished computation
end for
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BLOCK MATRIX MULTIPLICATION
Offsets and indexes

Shared Memory

Use (2D coordinates of) upper left corner of
input blocks as reference.

For i=1,...k:

A-block row blockIdx.y * block size

A-block column i * block size

B-block row i * block size * n

B-block column blockIdx.x * block size

Relative position inside the block
corresponds to the local (block internal)
thread index
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EXERCISE
Matrix multiplication with CUDA using shared memory

Detailed instructions
.../exercises/tasks/Cuda MM shared/Instructions.ipynb

Implement a matrix multiplication with CUDA
using shared memory.
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EXERCISE
Measured numbers

Results on JUWELS Booster (GFlops/s):

matrix size 1024 4096 8192 16384
Simple 286 1186 1554 1769
Shared memory(16,16) 296 952 1560 1742
Shared memory(32,32) 339 1369 1945 2205

Thank you for your attention!
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