
GPU PROGRAMMING WITH CUDA
Matrix Multiplication
April 09, 2024 Carolin Penke, Kaveh Haghighi Mood, Jochen Kreutz JSC

Member of the Helmholtz Association

CUDA MATRIX MULTIPLICATION
Distribution of work

A C

B

y

x

Crow ,col =
n∑

i=1
Arow ,i ∗ Bi,col

n × n threads needed for
matrix C of size n × n

Thread (x,y) computes result
element Cy ,x using row y of A
and column x of B

Member of the Helmholtz Association April 09, 2024 Slide 1 22

CUDA MATRIX MULTIPLICATION
Execution Grid Layout

y

x

Thread Block

Naive idea: One big thread
block to cover all result
elements
Using only one block
decreases performance (due to
reduced device occupancy)
Blocks are limited in size

→ Several blocks needed to cover
the full matrix C

Member of the Helmholtz Association April 09, 2024 Slide 2 22

CUDA MATRIX MULTIPLICATION
Execution Grid Layout

y

x

TB (0, 0) TB (1, 0) TB (k-1, 0)

TB (0, 1) TB (1, 1) TB (k-1, 1)

TB (0, k-1) TB (1, k-1) TB (k-1, k-1)

.

.

.

...

...

...

Thread (0, 0) Thread (m-1, 0)

Thread (m - 1, m - 1)Thread (0, m - 1)

Cover C of size n × n with 2D
kernel execution grid with k × k
thread blocks (TB).
Fixed block size m ×m.

Optimal value for m
architecture-dependant.

k =

{
n/m if n divisible by k
n/m + 1 else

Check if threads are out of
bounds.

Member of the Helmholtz Association April 09, 2024 Slide 3 22

CUDA MATRIX MULTIPLICATION
Execution Grid Layout

y

x

.

.

.

Cover C of size n × n with 2D
kernel execution grid with k × k
thread blocks (TB).
Fixed block size m ×m.

Optimal value for m
architecture-dependant.

k =

{
n/m if n divisible by k
n/m + 1 else

Check if threads are out of
bounds.

Member of the Helmholtz Association April 09, 2024 Slide 3 22

CUDA MATRIX MULTIPLICATION
Execution Grid Layout

y

x

.

.

.

Cover C of size n × n with 2D
kernel execution grid with k × k
thread blocks (TB).
Fixed block size m ×m.

Optimal value for m
architecture-dependant.

k =

{
n/m if n divisible by k
n/m + 1 else

Check if threads are out of
bounds.

Member of the Helmholtz Association April 09, 2024 Slide 3 22

CUDA MATRIX MULTIPLICATION
Execution grid layout

y

x

Block (x, y)

Thread (0, 0)

Thread (x * m + 0,

 y * m + 0)

Thread (1, 0)

Thread (x * m + 1,

 y * m + 0)

Thread (m - 1, 0)

Thread (x * m + m - 1,

 y * m + 0)

Thread (0, m - 1)

Thread (x * m + 0,

 y * m + m - 1)

Thread (1, m-1)

Thread (x * m + 1,

 y * m + m - 1)

Thread (m - 1, m - 1)

Thread (x * m + m - 1,

 y * m + m - 1)

Threads can be addressed via local
index (block internal) and global index
(full grid)
Keywords in kernel to get thread
information:

blockIdx.x blockIdx.y blockIdx.z

threadIdx.x threadIdx.y threadIdx.z

blockDim.x blockDim.y blockDim.z

gridDim.x gridDim.y gridDim.z

Member of the Helmholtz Association April 09, 2024 Slide 4 22

RECAP: GRID AND BLOCK SIZES
See day 1 material

Define block sizes, grid sizes and launch kernel from host:

Example workflow

int Nx = 1000, Ny = 1000;

dim3 blockDim(16, 16); //store 2D configuration in blockDim

int gx = (Nx % blockDim.x == 0) ? Nx / blockDim.x : Nx / blockDim.x + 1;

int gy = (Ny % blockDim.y == 0) ? Ny / blockDim.y : Ny / blockDim.y + 1;

dim3 gridDim(gx, gy); //store 2D configuration in gridDim

kernel<<<gridDim, blockDim>>>(); //launch kernel

Member of the Helmholtz Association April 09, 2024 Slide 5 22

RECAP: GRID AND BLOCK SIZES
See day 1 material

Define block sizes, grid sizes and launch kernel from host:

Example workflow

int Nx = 1000, Ny = 1000;

dim3 blockDim(16, 16); //store 2D configuration in blockDim

int gx = (Nx % blockDim.x == 0) ? Nx / blockDim.x : Nx / blockDim.x + 1;

int gy = (Ny % blockDim.y == 0) ? Ny / blockDim.y : Ny / blockDim.y + 1;

dim3 gridDim(gx, gy); //store 2D configuration in gridDim

kernel<<<gridDim, blockDim>>>(); //launch kernel

Member of the Helmholtz Association April 09, 2024 Slide 5 22

RECAP: GRID AND BLOCK SIZES
See day 1 material

Define block sizes, grid sizes and launch kernel from host:

Example workflow

int Nx = 1000, Ny = 1000;

dim3 blockDim(16, 16); //store 2D configuration in blockDim

int gx = (Nx % blockDim.x == 0) ? Nx / blockDim.x : Nx / blockDim.x + 1;

int gy = (Ny % blockDim.y == 0) ? Ny / blockDim.y : Ny / blockDim.y + 1;

dim3 gridDim(gx, gy); //store 2D configuration in gridDim

kernel<<<gridDim, blockDim>>>(); //launch kernel

Member of the Helmholtz Association April 09, 2024 Slide 5 22

CUDA MATRIX MULTIPLICATION
Kernel: Matrix Multiplication
__global__ void mm_kernel(float* A, float* B, float* C, int n) {

int col = blockIdx.x * blockDim.x + threadIdx.x;

int row = blockIdx.y * blockDim.y + threadIdx.y;

if (row < n && col < n) {

for (int i = 0; i < n; ++i) {

C[row*n + col] += A[row*n + i] * B[i*n + col];

}

}

}

mm_kernel <<< gridDim, blockDim >>> (a, b, c, n);

Member of the Helmholtz Association April 09, 2024 Slide 6 22

EXERCISE
Simple matrix multiplication with Cuda

Detailed instructions
.../exercises/tasks/Cuda MM simple/Instructions.ipynb

1 Implement CUDA Matrix Multiplication
C[row*n + col] += A[row*n + i] * B[i*n + col];

2 Instead of writing to array C, write to local variable
cvalue, write to C later.
cvalue += A[row*n + i] * B[i*n + col];

Member of the Helmholtz Association April 09, 2024 Slide 7 22

PERFORMANCE CONSIDERATIONS
Measured numbers

JUWELS Cluster: 1 x V100 (theoretical peak: 7 TFlops/s DP)
JUWELS Booster: 1 x A100 (theoretical peak: 9.7 TFlops/s DP, 19.5 with TC)

matrix size 64 1024 10240 64 1024 10240
JW Cluster [GFlops/s)] JW Booster [GFlops/s)]

with cvalue 1.2 319 1146 1.1 286.2 1587.1
direct write 1.02 196 391 0.9 198.3 562.2

Member of the Helmholtz Association April 09, 2024 Slide 8 22

PERFORMANCE CONSIDERATIONS
Profiler hints for simple matrix multiplication

Figure: Kernel profiling in Nsight Compute

NVIDIA Nsight Systems gives overview timeline.
NVIDIA Nsight Compute analyzes kernels.

→ useful hints, hotspots, potential performance issues
indicates very low compute utilization
dgemm kernel is memory-bound, waits for data

Member of the Helmholtz Association April 09, 2024 Slide 9 22

PERFORMANCE CONSIDERATIONS
GPU memory layout

. . .

Streaming Multiprocessor

L1/Shared (64 KiB)

Block 0

. . .thread 0

Registers

thread 1

Registers

Streaming Multiprocessor

L1/Shared (64 KiB)

Block x

. . .thread 0

Registers

thread 1

Registers

L2 Cache

Global Memory
array C located in global
memory
cvalue located in registers on
SM: faster write operations

Member of the Helmholtz Association April 09, 2024 Slide 10 22

PERFORMANCE CONSIDERATIONS
Profiler hints for simple matrix multiplication

Using cvalue reduces the access to the global memory

Member of the Helmholtz Association April 09, 2024 Slide 11 22

PERFORMANCE CONSIDERATIONS
GPU memory layout (schematics)

. . .

Streaming Multiprocessor

L1/Shared (64 KiB)

Block 0

. . .thread 0

Registers

thread 1

Registers

Streaming Multiprocessor

L1/Shared (64 KiB)

Block x

. . .thread 0

Registers

thread 1

Registers

L2 Cache

Global Memory

How to make use of Shared Memory?

matrix array C located in global
memory
cvalue located in registers on
SM: faster write operations

Member of the Helmholtz Association April 09, 2024 Slide 12 22

SHARED MEMORY
How to use inside your kernels

Allocate shared memory

// allocate vector in shared memory

__shared__ float[size];

// allocate 2D array

__shared__ float Msub[BLOCK_SIZE][BLOCK_SIZE];

Copy data from globalto shared memory

Msub[threadIdx.y][threadIdx.x] = M[threadIdx.y * width + threadIdx.x]

Remember: only shared between threads within the same thread block !

Member of the Helmholtz Association April 09, 2024 Slide 13 22

SHARED MEMORY

A C

B

y

x

Shared memory is limited, the whole matrices do not fit in all at once.

How can we rewrite Matrix Multiplication, s.t. data in shared memory is reused efficiently?

Solution: Tiling (very common in all matrix-based algorithms)

Member of the Helmholtz Association April 09, 2024 Slide 14 22

BLOCK MATRIX EXAMPLE
2× 2 blocks

A matrix can be divided into blocks:

A =


1 2
3 4

5 6
7 8

9 10
11 12

13 14
15 16

 =

[
A11 A12
A21 A22

]

If block sizes align, matrix multiplication can be rewritten in block form:

Member of the Helmholtz Association April 09, 2024 Slide 15 22

BLOCK MATRIX EXAMPLE
2× 2 blocks

A matrix can be divided into blocks:

A =


1 2
3 4

5 6
7 8

9 10
11 12

13 14
15 16

 =

[
A11 A12
A21 A22

]

If block sizes align, matrix multiplication can be rewritten in block form:[
A11 A12
A21 A22

]
·
[
B11 B12
B21 B22

]
=

[
A11B11 + A12B21 A11B12 + A12B22
A21B11 + A22B21 A21B12 + A22B22

]

Member of the Helmholtz Association April 09, 2024 Slide 15 22

BLOCK MATRIX EXAMPLE
2× 2 blocks

A matrix can be divided into blocks:

A =


1 2
3 4

5 6
7 8

9 10
11 12

13 14
15 16

 =

[
A11 A12
A21 A22

]

If block sizes align, matrix multiplication can be rewritten in block form:[
A11 A12

A21 A22

]
·

[
B11 B12

B21 B22

]
=

[
A11B11 + A12B21 A11B12 + A12B22

A21B11 + A22B21 A21B12 + A22B22

]

Member of the Helmholtz Association April 09, 2024 Slide 15 22

BLOCK MATRIX EXAMPLE
2× 2 blocks

A matrix can be divided into blocks:

A =


1 2
3 4

5 6
7 8

9 10
11 12

13 14
15 16

 =

[
A11 A12
A21 A22

]

If block sizes align, matrix multiplication can be rewritten in block form:[
A11 A12

A21 A22

]
·

[
B11 B12

B21 B22

]
=

[
A11B11 + A12B21 A11B12 + A12B22

A21B11 + A22B21 A21B12 + A22B22

]

Member of the Helmholtz Association April 09, 2024 Slide 15 22

BLOCK MATRIX EXAMPLE
2× 2 blocks

A matrix can be divided into blocks:

A =


1 2
3 4

5 6
7 8

9 10
11 12

13 14
15 16

 =

[
A11 A12
A21 A22

]

If block sizes align, matrix multiplication can be rewritten in block form:[
A11 A12

A21 A22

]
·

[
B11 B12

B21 B22

]
=

[
A11B11 + A12B21 A11B12 + A12B22

A21B11 + A22B21 A21B12 + A22B22

]

Member of the Helmholtz Association April 09, 2024 Slide 15 22

BLOCK MATRIX EXAMPLE
2× 2 blocks

A matrix can be divided into blocks:

A =


1 2
3 4

5 6
7 8

9 10
11 12

13 14
15 16

 =

[
A11 A12
A21 A22

]

If block sizes align, matrix multiplication can be rewritten in block form:[
A11 A12

A21 A22

]
·

[
B11 B12

B21 B22

]
=

[
A11B11 + A12B21 A11B12 + A12B22

A21B11 + A22B21 A21B12 + A22B22

]

Member of the Helmholtz Association April 09, 2024 Slide 15 22

BLOCK MATRIX EXAMPLE
2× 2 blocks

A matrix can be divided into blocks:

A =


1 2
3 4

5 6
7 8

9 10
11 12

13 14
15 16

 =

[
A11 A12
A21 A22

]

If block sizes align, matrix multiplication can be rewritten in block form:[
A11 A12
A21 A22

]
·
[
B11 B12
B21 B22

]
=

[
A11B11 + A12B21 A11B12 + A12B22
A21B11 + A22B21 A21B12 + A22B22

]
The whole matrices do not fit into shared memory, but we tile the matrix so that blocks do!

Member of the Helmholtz Association April 09, 2024 Slide 15 22

BLOCK MATRIX EXAMPLE
2× 2 blocks, using shared memory

input matrix A result matrix C

input matrix B

shared memory

We map: CUDA Thread Block = Matrix Block.
One block computes

C11 = A11B11 + A12B21

Implementation:
1 Load A11, B11 into shared memory
2 C11 ← A11B11

3 Load A12, B21 into shared memory
4 C11 ← C11 + A11B21

Member of the Helmholtz Association April 09, 2024 Slide 16 22

BLOCK MATRIX EXAMPLE
2× 2 blocks, using shared memory

input matrix A result matrix C

input matrix B

shared memory

We map: CUDA Thread Block = Matrix Block.
One block computes

C11 = A11B11 + A12B21

Implementation:
1 Load A11, B11 into shared memory
2 C11 ← A11B11

3 Load A12, B21 into shared memory
4 C11 ← C11 + A11B21

Member of the Helmholtz Association April 09, 2024 Slide 16 22

BLOCK MATRIX MULTIPLICATION
Workflow, k × k blocks

Shared Memory

Each thread (global index (x , y), local index
(s, t) in block (u, v)) does:

Cy,x ← 0
for I = 1 to k do

Copy input data Avi , Biu to shared memory (one
element per thread)

Compute value (t , s) in AviBiu .
Add this value to Cy,x

end for

Member of the Helmholtz Association April 09, 2024 Slide 17 22

BLOCK MATRIX MULTIPLICATION
Workflow, k × k blocks

Shared Memory

Each thread (global index (x , y), local index
(s, t) in block (u, v)) does:

Cy,x ← 0
for I = 1 to k do

Copy input data Avi , Biu to shared memory (one
element per thread)

Compute value (t , s) in AviBiu .
Add this value to Cy,x

end for

Member of the Helmholtz Association April 09, 2024 Slide 17 22

BLOCK MATRIX MULTIPLICATION
Workflow, k × k blocks

Shared memory

Each thread (global index (x , y), local index
(s, t) in block (u, v)) does:

Cy,x ← 0
for I = 1 to k do

Copy input data Avi , Biu to shared memory (one
element per thread)

Compute value (t , s) in AviBiu .
Add this value to Cy,x

end for

Member of the Helmholtz Association April 09, 2024 Slide 17 22

BLOCK MATRIX MULTIPLICATION
Workflow, k × k blocks

Each thread (global index (x , y), local index
(s, t) in block (u, v)) does:

Cy,x ← 0
for I = 1 to k do

Copy input data Avi , Biu to shared memory (one
element per thread)

Compute value (t , s) in AviBiu .
Add this value to Cy,x

end for

Member of the Helmholtz Association April 09, 2024 Slide 17 22

BLOCK MATRIX MULTIPLICATION
Thread synchronization

Shared Memory

Thread synchronization

Threads within a block may not be
completely in synch.

→ Synchronization is needed!

Synchronize threads within a block

syncthreads ();

Member of the Helmholtz Association April 09, 2024 Slide 18 22

BLOCK MATRIX MULTIPLICATION
Workflow, k × k blocks

Shared Memory

Each thread (global index (x , y), local index (s, t)
in block (u, v)) does:

Cy,x ← 0
for i = 1 to k do

Copy input data Avi , Biu to shared memory
(one element per thread)

Wait until all threads in block have copied their data
Compute value (t , s) in AviBiu .
Add this value to Cy,x

Wait until all threads in block have finished computation
end for

Member of the Helmholtz Association April 09, 2024 Slide 19 22

BLOCK MATRIX MULTIPLICATION
Offsets and indexes

Shared Memory

Use (2D coordinates of) upper left corner of
input blocks as reference.

For i=1,...k:

A-block row blockIdx.y * block size

A-block column i * block size

B-block row i * block size * n

B-block column blockIdx.x * block size

Relative position inside the block
corresponds to the local (block internal)
thread index

Member of the Helmholtz Association April 09, 2024 Slide 20 22

BLOCK MATRIX MULTIPLICATION
Offsets and indexes

Shared Memory

Use (2D coordinates of) upper left corner of
input blocks as reference.

For i=1,...k:

A-block row blockIdx.y * block size

A-block column i * block size

B-block row i * block size * n

B-block column blockIdx.x * block size

Relative position inside the block
corresponds to the local (block internal)
thread index

Member of the Helmholtz Association April 09, 2024 Slide 20 22

EXERCISE
Matrix multiplication with CUDA using shared memory

Detailed instructions
.../exercises/tasks/Cuda MM shared/Instructions.ipynb

Implement a matrix multiplication with CUDA
using shared memory.

Member of the Helmholtz Association April 09, 2024 Slide 21 22

EXERCISE
Measured numbers

Results on JUWELS Booster (GFlops/s):

matrix size 1024 4096 8192 16384
Simple 286 1186 1554 1769
Shared memory(16,16) 296 952 1560 1742
Shared memory(32,32) 339 1369 1945 2205

Thank you for your attention!

Member of the Helmholtz Association April 09, 2024 Slide 22 22

EXERCISE
Measured numbers

Results on JUWELS Booster (GFlops/s):

matrix size 1024 4096 8192 16384
Simple 286 1186 1554 1769
Shared memory(16,16) 296 952 1560 1742
Shared memory(32,32) 339 1369 1945 2205

Thank you for your attention!

Member of the Helmholtz Association April 09, 2024 Slide 22 22

