
CUDA GRAPHS
ASSEMBLING A FLOW
5 June 2024 Andreas Herten Forschungszentrum Jülich

Member of the Helmholtz Association



Overview, Outline

At a Glance
CUDA Graph: Expose dependencies between kernels
Capture once, launch repeatedly

Contents

About
Graph Generation
Conclusions

Member of the Helmholtz Association 5 June 2024 Slide 1 7



Overview

Graph: Series of operation (mostly kernel launches)
Define graph ones, launch repeatedly
Less CPU overhead: Most setup done in advance
Enable CUDA optimization
Phases of work submissions

Definition: Description of operations (graph nodes) and
dependencies (graph edges)
Instantiation: Snapshot of graph template, validation,
setup/init →executable graph
Execution: Launch graph (repeatedly)

Every stream can be converted to graph

A

B

C D

E

End

X

Y

Member of the Helmholtz Association 5 June 2024 Slide 2 7



Details

Available Operations
Kernel Launch CUDA kernel running on GPU

CPU Function Call Callback to function on CPU
Memcpy/Memset GPU data management

Events Waiting/recording event
External Dependency External semaphores/events

Sub-Graph Execute hierarchical sub-graph

Graph Creation
1 Explicit graph API
2 Stream capture

Member of the Helmholtz Association 5 June 2024 Slide 3 7



Details

Available Operations
Kernel Launch CUDA kernel running on GPU

CPU Function Call Callback to function on CPU
Memcpy/Memset GPU data management

Events Waiting/recording event
External Dependency External semaphores/events

Sub-Graph Execute hierarchical sub-graph
Graph Creation

1 Explicit graph API
2 Stream capture

Member of the Helmholtz Association 5 June 2024 Slide 3 7



Generation: Explicit Graph API
// Create the graph - it starts out empty
cudaGraphCreate(&graph, 0);

// Create kernel launches as nodes of graph
cudaGraphAddKernelNode(&a, graph, NULL, 0, &nodeParams);
cudaGraphAddKernelNode(&b, graph, NULL, 0, &nodeParams);
cudaGraphAddKernelNode(&c, graph, NULL, 0, &nodeParams);
cudaGraphAddKernelNode(&d, graph, NULL, 0, &nodeParams);

// Now set up dependencies on each node
cudaGraphAddDependencies(graph, &a, &b, 1); // A->B
cudaGraphAddDependencies(graph, &a, &c, 1); // A->C
cudaGraphAddDependencies(graph, &b, &d, 1); // B->D
cudaGraphAddDependencies(graph, &c, &d, 1); // C->D

cudaGraphInstantiate(...);
for (auto step = 0; step < N_step; ++step)
cudaGraphLaunch(graph, stream);

A

B C

End

Member of the Helmholtz Association 5 June 2024 Slide 4 7



Generation: Stream Capture
// stream1 is the origin stream
cudaStreamBeginCapture(stream1);
kernel_A<<< ..., stream1 >>>(...);

// Fork into stream2
cudaEventRecord(event1, stream1);
cudaStreamWaitEvent(stream2, event1);

kernel_B<<< ..., stream1 >>>(...);
kernel_C<<< ..., stream2 >>>(...);

// Join stream2 back to origin stream (stream1)
cudaEventRecord(event2, stream2);
cudaStreamWaitEvent(stream1, event2);

kernel_D<<< ..., stream1 >>>(...);
// End capture in the origin stream
cudaStreamEndCapture(stream1, &graph);

A

B C

End

Member of the Helmholtz Association 5 June 2024 Slide 5 7



Conclusions



Conclusions: CUDA Graphs

Expose dependencies
Remove overhead for repeated kernel launches
Capture or build

Member of the Helmholtz Association 5 June 2024 Slide 7 7



Conclusions: CUDA Graphs

Expose dependencies
Remove overhead for repeated kernel launches
Capture or build

Thank you

for your att
ention!

a.herten@fz-juelich.de

Member of the Helmholtz Association 5 June 2024 Slide 7 7

mailto:a.herten@fz-juelich.de

	Outline
	About
	Graph Generation
	Conclusions

