001034824 001__ 1034824 001034824 005__ 20250108211118.0 001034824 0247_ $$2datacite_doi$$a10.34734/FZJ-2024-07577 001034824 037__ $$aFZJ-2024-07577 001034824 041__ $$aEnglish 001034824 1001_ $$0P:(DE-Juel1)200181$$aBolsmann, Katrin$$b0$$eCorresponding author 001034824 1112_ $$aML4Q Summer School on Quantum Error Correction$$cBonn$$d2024-09-23 - 2024-09-27$$wGermany 001034824 245__ $$aQuantum Information Processing with Trapped Rydberg Ions 001034824 260__ $$c2024 001034824 3367_ $$033$$2EndNote$$aConference Paper 001034824 3367_ $$2BibTeX$$aINPROCEEDINGS 001034824 3367_ $$2DRIVER$$aconferenceObject 001034824 3367_ $$2ORCID$$aCONFERENCE_POSTER 001034824 3367_ $$2DataCite$$aOutput Types/Conference Poster 001034824 3367_ $$0PUB:(DE-HGF)24$$2PUB:(DE-HGF)$$aPoster$$bposter$$mposter$$s1736337923_5690$$xAfter Call 001034824 502__ $$cRWTH Aachen 001034824 520__ $$aCombining the strong and long-range interaction of cold Rydberg atoms with the controllability of trapped ions, ultracold trapped Rydberg ions provide a promising platform for scalable quantum computing. We demonstrate how microwave-dressed Rydberg states result in rotating permanent dipole moments causing strong dipole-dipole interaction between ions in highly excited Rydberg states. Due to the large difference in time scales, the fast electronic dynamics of the Rydberg ions decouple from the slower oscillator modes in the linear Coulomb crystal. These properties allow us to realize a submicrosecond two-qubit gate between two Rydberg ions confined in a Paul trap reaching fidelities of > 99% under consideration of the finite lifetime of the Rydberg states at room temperature. 001034824 536__ $$0G:(DE-HGF)POF4-5221$$a5221 - Advanced Solid-State Qubits and Qubit Systems (POF4-522)$$cPOF4-522$$fPOF IV$$x0 001034824 536__ $$0G:(EU-Grant)101046968$$aBRISQ - Brisk Rydberg Ions for Scalable Quantum Processors (101046968)$$c101046968$$fHORIZON-EIC-2021-PATHFINDEROPEN-01$$x1 001034824 8564_ $$uhttps://juser.fz-juelich.de/record/1034824/files/Poster.pdf$$yOpenAccess 001034824 909CO $$ooai:juser.fz-juelich.de:1034824$$popenaire$$popen_access$$pVDB$$pdriver$$pec_fundedresources 001034824 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)200181$$aForschungszentrum Jülich$$b0$$kFZJ 001034824 9131_ $$0G:(DE-HGF)POF4-522$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5221$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vQuantum Computing$$x0 001034824 9141_ $$y2024 001034824 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess 001034824 920__ $$lyes 001034824 9201_ $$0I:(DE-Juel1)PGI-2-20110106$$kPGI-2$$lTheoretische Nanoelektronik$$x0 001034824 980__ $$aposter 001034824 980__ $$aVDB 001034824 980__ $$aUNRESTRICTED 001034824 980__ $$aI:(DE-Juel1)PGI-2-20110106 001034824 9801_ $$aFullTexts