001034828 001__ 1034828
001034828 005__ 20250203103404.0
001034828 0247_ $$2arXiv$$aarXiv:2412.13699
001034828 0247_ $$2datacite_doi$$a10.34734/FZJ-2024-07581
001034828 037__ $$aFZJ-2024-07581
001034828 041__ $$aEnglish
001034828 1001_ $$0P:(DE-HGF)0$$aWilkinson, Joseph W. P.$$b0
001034828 245__ $$aTwo-qubit gate protocols with microwave-dressed Rydberg ions in a linear Paul trap
001034828 260__ $$c2024
001034828 3367_ $$0PUB:(DE-HGF)25$$2PUB:(DE-HGF)$$aPreprint$$bpreprint$$mpreprint$$s1736338080_21839
001034828 3367_ $$2ORCID$$aWORKING_PAPER
001034828 3367_ $$028$$2EndNote$$aElectronic Article
001034828 3367_ $$2DRIVER$$apreprint
001034828 3367_ $$2BibTeX$$aARTICLE
001034828 3367_ $$2DataCite$$aOutput Types/Working Paper
001034828 520__ $$aUltracold trapped atomic ions excited into highly energetic Rydberg states constitute a promising platform for scalable quantum information processing. Elementary building blocks for such tasks are high-fidelity and sufficiently fast entangling two-qubit gates, which can be achieved via strong dipole-dipole interactions between microwave-dressed Rydberg ions, as recently demonstrated in a breakthrough experiment [Nature 580, 345 (2020)]. We theoretically investigate the performance of three protocols leading to controlled-phase gate operations. Starting from a microscopic description of Rydberg ions in a linear Paul trap, we derive an effective Hamiltonian that faithfully captures the essential dynamics underlying the gate protocols. We then use an optimization scheme to fine-tune experimentally controllable parameters like laser detuning and Rabi frequency to yield maximal gate fidelity under each studied protocol. We show how non-adiabatic transitions resulting from fast laser driving relative to the characteristic time scales of the system detrimentally affect the fidelity. Despite this, we demonstrate that in the realistic scenario of Rydberg ions with finite radiative lifetimes, optimizing the best found gate protocol enables achievement of fidelities as high as $99.25\,\%$ for a gate time of $0.2\,\mu\mathrm{s}$. This considerably undercuts entangling gate durations between ground-state ions, for which gate times are typically limited by the comparably slower time scales of vibrational modes. Overall, this places trapped Rydberg ions into the regime where fast high-accuracy quantum computing and eventually quantum error correction become possible.
001034828 536__ $$0G:(DE-HGF)POF4-5221$$a5221 - Advanced Solid-State Qubits and Qubit Systems (POF4-522)$$cPOF4-522$$fPOF IV$$x0
001034828 536__ $$0G:(EU-Grant)101046968$$aBRISQ - Brisk Rydberg Ions for Scalable Quantum Processors (101046968)$$c101046968$$fHORIZON-EIC-2021-PATHFINDEROPEN-01$$x1
001034828 588__ $$aDataset connected to arXivarXiv
001034828 7001_ $$0P:(DE-Juel1)200181$$aBolsmann, Katrin$$b1$$eCorresponding author$$ufzj
001034828 7001_ $$0P:(DE-Juel1)194121$$aGuedes, Thiago L. M.$$b2$$ufzj
001034828 7001_ $$0P:(DE-Juel1)179396$$aMüller, Markus$$b3$$ufzj
001034828 7001_ $$0P:(DE-HGF)0$$aLesanovsky, Igor$$b4
001034828 8564_ $$uhttps://arxiv.org/abs/2412.13699
001034828 8564_ $$uhttps://juser.fz-juelich.de/record/1034828/files/2412.13699v1.pdf$$yOpenAccess
001034828 909CO $$ooai:juser.fz-juelich.de:1034828$$pdnbdelivery$$pec_fundedresources$$pVDB$$pdriver$$popen_access$$popenaire
001034828 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)200181$$aForschungszentrum Jülich$$b1$$kFZJ
001034828 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)194121$$aForschungszentrum Jülich$$b2$$kFZJ
001034828 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)179396$$aForschungszentrum Jülich$$b3$$kFZJ
001034828 9131_ $$0G:(DE-HGF)POF4-522$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5221$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vQuantum Computing$$x0
001034828 9141_ $$y2024
001034828 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001034828 920__ $$lyes
001034828 9201_ $$0I:(DE-Juel1)PGI-2-20110106$$kPGI-2$$lTheoretische Nanoelektronik$$x0
001034828 980__ $$apreprint
001034828 980__ $$aVDB
001034828 980__ $$aUNRESTRICTED
001034828 980__ $$aI:(DE-Juel1)PGI-2-20110106
001034828 9801_ $$aFullTexts