001     1034828
005     20250203103404.0
024 7 _ |a arXiv:2412.13699
|2 arXiv
024 7 _ |a 10.34734/FZJ-2024-07581
|2 datacite_doi
037 _ _ |a FZJ-2024-07581
041 _ _ |a English
100 1 _ |a Wilkinson, Joseph W. P.
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Two-qubit gate protocols with microwave-dressed Rydberg ions in a linear Paul trap
260 _ _ |c 2024
336 7 _ |a Preprint
|b preprint
|m preprint
|0 PUB:(DE-HGF)25
|s 1736338080_21839
|2 PUB:(DE-HGF)
336 7 _ |a WORKING_PAPER
|2 ORCID
336 7 _ |a Electronic Article
|0 28
|2 EndNote
336 7 _ |a preprint
|2 DRIVER
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a Output Types/Working Paper
|2 DataCite
520 _ _ |a Ultracold trapped atomic ions excited into highly energetic Rydberg states constitute a promising platform for scalable quantum information processing. Elementary building blocks for such tasks are high-fidelity and sufficiently fast entangling two-qubit gates, which can be achieved via strong dipole-dipole interactions between microwave-dressed Rydberg ions, as recently demonstrated in a breakthrough experiment [Nature 580, 345 (2020)]. We theoretically investigate the performance of three protocols leading to controlled-phase gate operations. Starting from a microscopic description of Rydberg ions in a linear Paul trap, we derive an effective Hamiltonian that faithfully captures the essential dynamics underlying the gate protocols. We then use an optimization scheme to fine-tune experimentally controllable parameters like laser detuning and Rabi frequency to yield maximal gate fidelity under each studied protocol. We show how non-adiabatic transitions resulting from fast laser driving relative to the characteristic time scales of the system detrimentally affect the fidelity. Despite this, we demonstrate that in the realistic scenario of Rydberg ions with finite radiative lifetimes, optimizing the best found gate protocol enables achievement of fidelities as high as $99.25\,\%$ for a gate time of $0.2\,\mu\mathrm{s}$. This considerably undercuts entangling gate durations between ground-state ions, for which gate times are typically limited by the comparably slower time scales of vibrational modes. Overall, this places trapped Rydberg ions into the regime where fast high-accuracy quantum computing and eventually quantum error correction become possible.
536 _ _ |a 5221 - Advanced Solid-State Qubits and Qubit Systems (POF4-522)
|0 G:(DE-HGF)POF4-5221
|c POF4-522
|f POF IV
|x 0
536 _ _ |a BRISQ - Brisk Rydberg Ions for Scalable Quantum Processors (101046968)
|0 G:(EU-Grant)101046968
|c 101046968
|f HORIZON-EIC-2021-PATHFINDEROPEN-01
|x 1
588 _ _ |a Dataset connected to arXivarXiv
700 1 _ |a Bolsmann, Katrin
|0 P:(DE-Juel1)200181
|b 1
|e Corresponding author
|u fzj
700 1 _ |a Guedes, Thiago L. M.
|0 P:(DE-Juel1)194121
|b 2
|u fzj
700 1 _ |a Müller, Markus
|0 P:(DE-Juel1)179396
|b 3
|u fzj
700 1 _ |a Lesanovsky, Igor
|0 P:(DE-HGF)0
|b 4
856 4 _ |u https://arxiv.org/abs/2412.13699
856 4 _ |u https://juser.fz-juelich.de/record/1034828/files/2412.13699v1.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:1034828
|p openaire
|p open_access
|p driver
|p VDB
|p ec_fundedresources
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)200181
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)194121
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)179396
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-522
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Quantum Computing
|9 G:(DE-HGF)POF4-5221
|x 0
914 1 _ |y 2024
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)PGI-2-20110106
|k PGI-2
|l Theoretische Nanoelektronik
|x 0
980 _ _ |a preprint
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)PGI-2-20110106
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21