001034860 001__ 1034860
001034860 005__ 20250912110151.0
001034860 0247_ $$2doi$$a10.1007/s11075-024-01964-z
001034860 0247_ $$2ISSN$$a1017-1398
001034860 0247_ $$2ISSN$$a1572-9265
001034860 0247_ $$2datacite_doi$$a10.34734/FZJ-2024-07607
001034860 0247_ $$2WOS$$aWOS:001344332600002
001034860 037__ $$aFZJ-2024-07607
001034860 041__ $$aEnglish
001034860 082__ $$a510
001034860 1001_ $$0P:(DE-Juel1)190575$$aBaumann, Thomas$$b0$$eCorresponding author
001034860 245__ $$aAdaptive time step selection for spectral deferred correction
001034860 260__ $$bSpringer Science Business Media B.V.$$c2025
001034860 3367_ $$2DRIVER$$aarticle
001034860 3367_ $$2DataCite$$aOutput Types/Journal article
001034860 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1756102969_28576
001034860 3367_ $$2BibTeX$$aARTICLE
001034860 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001034860 3367_ $$00$$2EndNote$$aJournal Article
001034860 520__ $$aSpectral Deferred Correction (SDC) is an iterative method for the numerical solution of ordinary differential equations. It works by refining the numerical solution for an initial value problem by approximately solving differential equations for the error, and can be interpreted as a preconditioned fixed-point iteration for solving the fully implicit collocation problem. We adopt techniques from embedded Runge-Kutta Methods (RKM) to SDC in order to provide a mechanism for adaptive time step size selection and thus increase computational efficiency of SDC. We propose two SDC-specific estimates of the local error that are generic and do not rely on problem specific quantities. We demonstrate a gain in efficiency over standard SDC with fixed step size and compare efficiency favorably against state-of-the-art adaptive RKM.
001034860 536__ $$0G:(DE-HGF)POF4-5112$$a5112 - Cross-Domain Algorithms, Tools, Methods Labs (ATMLs) and Research Groups (POF4-511)$$cPOF4-511$$fPOF IV$$x0
001034860 536__ $$0G:(EU-Grant)955701$$aTIME-X - TIME parallelisation: for eXascale computing and beyond (955701)$$c955701$$fH2020-JTI-EuroHPC-2019-1$$x1
001034860 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001034860 7001_ $$00000-0003-0287-2120$$aGötschel, Sebastian$$b1
001034860 7001_ $$00000-0003-1745-0780$$aLunet, Thibaut$$b2
001034860 7001_ $$00000-0003-1904-2473$$aRuprecht, Daniel$$b3
001034860 7001_ $$0P:(DE-Juel1)132268$$aSpeck, Robert$$b4
001034860 773__ $$0PERI:(DE-600)2002650-X$$a10.1007/s11075-024-01964-z$$p369-393$$tNumerical algorithms$$v100$$x1017-1398$$y2025
001034860 8564_ $$uhttps://juser.fz-juelich.de/record/1034860/files/s11075-024-01964-z.pdf$$yOpenAccess
001034860 8767_ $$d2025-01-06$$eHybrid-OA$$jDEAL
001034860 909CO $$ooai:juser.fz-juelich.de:1034860$$pdnbdelivery$$popenCost$$pec_fundedresources$$pVDB$$pdriver$$pOpenAPC_DEAL$$popen_access$$popenaire
001034860 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)190575$$aForschungszentrum Jülich$$b0$$kFZJ
001034860 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)132268$$aForschungszentrum Jülich$$b4$$kFZJ
001034860 9131_ $$0G:(DE-HGF)POF4-511$$1G:(DE-HGF)POF4-510$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5112$$aDE-HGF$$bKey Technologies$$lEngineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action$$vEnabling Computational- & Data-Intensive Science and Engineering$$x0
001034860 9141_ $$y2025
001034860 915pc $$0PC:(DE-HGF)0000$$2APC$$aAPC keys set
001034860 915pc $$0PC:(DE-HGF)0001$$2APC$$aLocal Funding
001034860 915pc $$0PC:(DE-HGF)0002$$2APC$$aDFG OA Publikationskosten
001034860 915pc $$0PC:(DE-HGF)0113$$2APC$$aDEAL: Springer Nature 2020
001034860 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-10-22
001034860 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2023-10-22
001034860 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
001034860 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2023-10-22
001034860 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bNUMER ALGORITHMS : 2022$$d2023-10-22
001034860 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2023-10-22
001034860 915__ $$0StatID:(DE-HGF)3002$$2StatID$$aDEAL Springer$$d2023-10-22$$wger
001034860 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-10-22
001034860 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2023-10-22
001034860 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001034860 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2023-10-22
001034860 915__ $$0StatID:(DE-HGF)0020$$2StatID$$aNo Peer Review$$bASC$$d2023-10-22
001034860 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-10-22
001034860 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2023-10-22$$wger
001034860 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-10-22
001034860 920__ $$lyes
001034860 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0
001034860 980__ $$ajournal
001034860 980__ $$aVDB
001034860 980__ $$aUNRESTRICTED
001034860 980__ $$aI:(DE-Juel1)JSC-20090406
001034860 980__ $$aAPC
001034860 9801_ $$aAPC
001034860 9801_ $$aFullTexts