001034866 001__ 1034866
001034866 005__ 20250203133243.0
001034866 0247_ $$2doi$$a10.1109/TASC.2024.3502572
001034866 0247_ $$2WOS$$aWOS:001380658400025
001034866 037__ $$aFZJ-2024-07612
001034866 041__ $$aEnglish
001034866 082__ $$a620
001034866 1001_ $$0P:(DE-Juel1)130633$$aFaley, Michael I.$$b0$$eCorresponding author
001034866 1112_ $$aThe Applied Superconductivity Conference$$cSalt Lake City$$d2024-09-01 - 2024-09-06$$gASC 2024$$wUSA
001034866 245__ $$aNanoSQUIDs With Proximity Effect Nanobridge Josephson Junctions for Future Applications in Electron Microscopy
001034866 260__ $$aNew York, NY$$bIEEE$$c2025
001034866 3367_ $$2DRIVER$$aarticle
001034866 3367_ $$0PUB:(DE-HGF)8$$2PUB:(DE-HGF)$$aContribution to a conference proceedings$$mcontrib
001034866 3367_ $$2DataCite$$aOutput Types/Journal article
001034866 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1736774411_12730
001034866 3367_ $$2BibTeX$$aARTICLE
001034866 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001034866 3367_ $$00$$2EndNote$$aJournal Article
001034866 520__ $$aNanoscale superconducting quantum interference devices (nanoSQUIDs) with nanobridge Josephson junctions (nJJs) were prepared on SiN membranes for experiments with transmission electron microscope (TEM) at temperatures below 10 K. As thin-film materials for the nanobridges, metals Ti and Nb were combined into 3-layer heterostructures for adjusting superconducting parameters of the nJJs through the proximity effect. This allowed to reduce spread of parameters in ultrathin superconducting films and to adjust operating temperature of nJJs to the optimum operating temperature of the commercial TEM sample holders cooled using liquid helium. Electron beam lithography and high selectivity reactive ion etching with pure SF6 gas were used to pattern nJJs with down to 10 nm width that is comparable to coherence length in thin films of Nb. Measurements revealed non-hysteretic I(V) characteristics of the nJJs and nanoSQUIDs. The paper is mainly devoted to the development of nanoSQUIDs for possible applications in TEM. Towards realization of hybrid superconductor-ferromagnetic nanostructures for further experiments in TEM, Permalloy triangles with spatial resolution down to ~100 nm were prepared on similar SiN membranes and studied by Lorentz TEM method. These technologies are promising for the fabrication of superconducting electronics based on nJJs for operation inside a TEM.
001034866 536__ $$0G:(DE-HGF)POF4-5351$$a5351 - Platform for Correlative, In Situ and Operando Characterization (POF4-535)$$cPOF4-535$$fPOF IV$$x0
001034866 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001034866 7001_ $$0P:(DE-Juel1)194483$$aVas, Joseph Vimal$$b1$$ufzj
001034866 7001_ $$0P:(DE-Juel1)167381$$aLu, Penghan$$b2
001034866 7001_ $$0P:(DE-Juel1)144121$$aDunin-Borkowski, Rafal$$b3
001034866 773__ $$0PERI:(DE-600)2025387-4$$a10.1109/TASC.2024.3502572$$gVol. 35, no. 5, p. 1 - 5$$n5$$p1600105$$tIEEE transactions on applied superconductivity$$v35$$x1051-8223$$y2025
001034866 8564_ $$uhttps://ieeexplore.ieee.org/document/10757361
001034866 8564_ $$uhttps://juser.fz-juelich.de/record/1034866/files/FINAL%20VERSION.pdf$$yRestricted
001034866 909CO $$ooai:juser.fz-juelich.de:1034866$$pVDB
001034866 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130633$$aForschungszentrum Jülich$$b0$$kFZJ
001034866 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)194483$$aForschungszentrum Jülich$$b1$$kFZJ
001034866 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)167381$$aForschungszentrum Jülich$$b2$$kFZJ
001034866 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144121$$aForschungszentrum Jülich$$b3$$kFZJ
001034866 9131_ $$0G:(DE-HGF)POF4-535$$1G:(DE-HGF)POF4-530$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5351$$aDE-HGF$$bKey Technologies$$lMaterials Systems Engineering$$vMaterials Information Discovery$$x0
001034866 9141_ $$y2025
001034866 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2023-08-23
001034866 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2023-08-23
001034866 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bIEEE T APPL SUPERCON : 2022$$d2024-12-17
001034866 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-17
001034866 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-17
001034866 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2024-12-17
001034866 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2024-12-17
001034866 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-17
001034866 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2024-12-17
001034866 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-17
001034866 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2024-12-17
001034866 920__ $$lyes
001034866 9201_ $$0I:(DE-Juel1)ER-C-1-20170209$$kER-C-1$$lPhysik Nanoskaliger Systeme$$x0
001034866 980__ $$ajournal
001034866 980__ $$aVDB
001034866 980__ $$acontrib
001034866 980__ $$aI:(DE-Juel1)ER-C-1-20170209
001034866 980__ $$aUNRESTRICTED