001     1034866
005     20250203133243.0
024 7 _ |a 10.1109/TASC.2024.3502572
|2 doi
024 7 _ |a WOS:001380658400025
|2 WOS
037 _ _ |a FZJ-2024-07612
041 _ _ |a English
082 _ _ |a 620
100 1 _ |a Faley, Michael I.
|0 P:(DE-Juel1)130633
|b 0
|e Corresponding author
111 2 _ |a The Applied Superconductivity Conference
|g ASC 2024
|c Salt Lake City
|d 2024-09-01 - 2024-09-06
|w USA
245 _ _ |a NanoSQUIDs With Proximity Effect Nanobridge Josephson Junctions for Future Applications in Electron Microscopy
260 _ _ |a New York, NY
|c 2025
|b IEEE
336 7 _ |a article
|2 DRIVER
336 7 _ |a Contribution to a conference proceedings
|0 PUB:(DE-HGF)8
|2 PUB:(DE-HGF)
|m contrib
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1736774411_12730
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Nanoscale superconducting quantum interference devices (nanoSQUIDs) with nanobridge Josephson junctions (nJJs) were prepared on SiN membranes for experiments with transmission electron microscope (TEM) at temperatures below 10 K. As thin-film materials for the nanobridges, metals Ti and Nb were combined into 3-layer heterostructures for adjusting superconducting parameters of the nJJs through the proximity effect. This allowed to reduce spread of parameters in ultrathin superconducting films and to adjust operating temperature of nJJs to the optimum operating temperature of the commercial TEM sample holders cooled using liquid helium. Electron beam lithography and high selectivity reactive ion etching with pure SF6 gas were used to pattern nJJs with down to 10 nm width that is comparable to coherence length in thin films of Nb. Measurements revealed non-hysteretic I(V) characteristics of the nJJs and nanoSQUIDs. The paper is mainly devoted to the development of nanoSQUIDs for possible applications in TEM. Towards realization of hybrid superconductor-ferromagnetic nanostructures for further experiments in TEM, Permalloy triangles with spatial resolution down to ~100 nm were prepared on similar SiN membranes and studied by Lorentz TEM method. These technologies are promising for the fabrication of superconducting electronics based on nJJs for operation inside a TEM.
536 _ _ |a 5351 - Platform for Correlative, In Situ and Operando Characterization (POF4-535)
|0 G:(DE-HGF)POF4-5351
|c POF4-535
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Vas, Joseph Vimal
|0 P:(DE-Juel1)194483
|b 1
|u fzj
700 1 _ |a Lu, Penghan
|0 P:(DE-Juel1)167381
|b 2
700 1 _ |a Dunin-Borkowski, Rafal
|0 P:(DE-Juel1)144121
|b 3
773 _ _ |a 10.1109/TASC.2024.3502572
|g Vol. 35, no. 5, p. 1 - 5
|0 PERI:(DE-600)2025387-4
|n 5
|p 1600105
|t IEEE transactions on applied superconductivity
|v 35
|y 2025
|x 1051-8223
856 4 _ |u https://ieeexplore.ieee.org/document/10757361
856 4 _ |u https://juser.fz-juelich.de/record/1034866/files/FINAL%20VERSION.pdf
|y Restricted
909 C O |o oai:juser.fz-juelich.de:1034866
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)130633
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)194483
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)167381
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)144121
913 1 _ |a DE-HGF
|b Key Technologies
|l Materials Systems Engineering
|1 G:(DE-HGF)POF4-530
|0 G:(DE-HGF)POF4-535
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Materials Information Discovery
|9 G:(DE-HGF)POF4-5351
|x 0
914 1 _ |y 2025
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2023-08-23
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2023-08-23
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b IEEE T APPL SUPERCON : 2022
|d 2024-12-17
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-17
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-12-17
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2024-12-17
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2024-12-17
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-17
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2024-12-17
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-17
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2024-12-17
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)ER-C-1-20170209
|k ER-C-1
|l Physik Nanoskaliger Systeme
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a contrib
980 _ _ |a I:(DE-Juel1)ER-C-1-20170209
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21