001     1034872
005     20250203103406.0
024 7 _ |a 10.34734/FZJ-2024-07618
|2 datacite_doi
037 _ _ |a FZJ-2024-07618
100 1 _ |a Vodeb, Jaka
|0 P:(DE-Juel1)196658
|b 0
|e Corresponding author
111 2 _ |a 13th Nonequilibrium Quantum Workshop
|c Krvavec
|d 2024-12-15 - 2024-12-19
|w Slovenia
245 _ _ |a Stirring the false vacuum via interacting quantized bubbles on a 5564-qubit quantum annealer
260 _ _ |c 2024
336 7 _ |a Conference Paper
|0 33
|2 EndNote
336 7 _ |a Other
|2 DataCite
336 7 _ |a INPROCEEDINGS
|2 BibTeX
336 7 _ |a conferenceObject
|2 DRIVER
336 7 _ |a LECTURE_SPEECH
|2 ORCID
336 7 _ |a Conference Presentation
|b conf
|m conf
|0 PUB:(DE-HGF)6
|s 1736768784_25079
|2 PUB:(DE-HGF)
|x Invited
520 _ _ |a False vacuum decay is a potential mechanism governing the evolution of the early Universe, with profound connections to non-equilibrium quantum physics, including quenched dynamics, the Kibble-Zurek mechanism, and dynamical metastability. The non-perturbative character of the false vacuum decay and the scarcity of its experimental probes make the effect notoriously difficult to study, with many basic open questions, such as how the bubbles of true vacuum form, move and interact with each other. Here we utilize a quantum annealer with 5564 superconducting flux qubits to directly observe quantized bubble formation in real time -- the hallmark of false vacuum decay dynamics. Moreover, we develop an effective model that describes the initial bubble creation and subsequent interaction effects. We demonstrate that the effective model remains accurate in the presence of dissipation, showing that our annealer can access coherent scaling laws in driven many-body dynamics of 5564 qubits for over 1μs, i.e., more than 1000 intrinsic qubit time units. This work sets the stage for exploring late-time dynamics of the false vacuum at computationally intractable system sizes, dimensionality, and topology in quantum annealer platforms.
536 _ _ |a 5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511)
|0 G:(DE-HGF)POF4-5111
|c POF4-511
|f POF IV
|x 0
700 1 _ |a Desaules, Jean-Yves
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Hallam, Andrew
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Rava, Andrea
|0 P:(DE-Juel1)191142
|b 3
700 1 _ |a Humar, Gregor
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Willsch, Dennis
|0 P:(DE-Juel1)167542
|b 5
700 1 _ |a Jin, Fengping
|0 P:(DE-Juel1)144355
|b 6
700 1 _ |a Willsch, Madita
|0 P:(DE-Juel1)167543
|b 7
700 1 _ |a Michielsen, Kristel
|0 P:(DE-Juel1)138295
|b 8
700 1 _ |a Papić, Zlatko
|0 P:(DE-HGF)0
|b 9
856 4 _ |u https://nqw.ijs.si/
856 4 _ |u https://juser.fz-juelich.de/record/1034872/files/False%20vacuum%20decay%201D%202D.pptx
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:1034872
|p openaire
|p open_access
|p VDB
|p driver
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)196658
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)191142
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)167542
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)144355
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)167543
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 8
|6 P:(DE-Juel1)138295
913 1 _ |a DE-HGF
|b Key Technologies
|l Engineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action
|1 G:(DE-HGF)POF4-510
|0 G:(DE-HGF)POF4-511
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Enabling Computational- & Data-Intensive Science and Engineering
|9 G:(DE-HGF)POF4-5111
|x 0
914 1 _ |y 2024
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
920 1 _ |0 I:(DE-Juel1)JSC-20090406
|k JSC
|l Jülich Supercomputing Center
|x 0
980 1 _ |a FullTexts
980 _ _ |a conf
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)JSC-20090406


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21