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FASTGPR: DIVIDE-AND-CONQUER TECHNIQUE IN 
NEUROIMAGING DATA SHORTENS TRAINING TIME

AND IMPROVES ACCURACY

Introduction
● Gaussian process regression (GPR) has shown great potential for studying healthy aging and 
disease via brain-age prediction (BAP) using structural MRI[1]. 

● A big drawback of GPR is the training complexity which is an O(N^3) operation 
(N=number of data points).

● The need for expansive datasets and the high dimensionality of MRI data, renders the training of 
GPR impractical with conventional computing resources.

● We investigated whether a divide-and-conquer approach can be used together with the GPR model.

Results & Conclusions
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Material
● T1w MRI scans of healthy subjects 
from IXI [2], eNKI [3], CamCAN [4] 
(each n>500, total N=1810, 18-88 
age range). 

● All analyses were run on an Apple M2 
pro (12-core) processor with 32GB 
RAM, under the same conditions.

Methods

MRI preprocessing: CAT 12.8 [5] → linear and non-linear 
spatial normalization, tissue segmentation and 
modulation.
238,955 voxels per subject representing voxel-wise gray 
matter volume.
Smoothing→4 mm FWHM Gaussian kernel, 
Resampling (linear interpolation)→8 mm spatial 
resolution Finally n=3747 features per subject.
● Performance estimated in terms of mean absolute 

error (MAE) using Leave-One-Site-Out.
● Randomly divided training data into non-overlapping 

subsets while stratifying the splits over age. 
● One GPR model was trained on each subset
● Final prediction was obtained by averaging the 

predictions of all the models.
● We implemented this process with two-, three-, four- 

and a five-way split of the training data.
● Repeated up to ten times with distinct random seeds. 

The prediction for a test sample was obtained by 
averaging predictions across the splits. 
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No-split model, with 1000 features: total training time 
represented 42.1% of the training time of 2000 features, & 
26.4% of the training time of using 3000 features.
Similar time reductions were obtained within the split setups

The non-split, 2x2-splits and 2x3-splits models exhibited a 
less pronounced impact on MAE, except for 1000 features. 
The 2x4- and 2x5-splits models displayed a decrease in 
predictive performance for high number of features (3000 and 
3500).
Low sample/feature ratio might cause a drop in 
predictive performance.
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** training time is estimated as 
** no-split model’s performance (red line)
● 2-splits MAE=5.63 – total compute time=24.2% of the no-
split model’s time

● The 3-, 4- and 5-split configurations manifest a reduction in 
training time and a pronounced drop in predictive 
performance

● 2 repetitions (2 random seeds) of 2-splits MAE=5.5, training 
time 46.4%

The 2-split configuration with at least two iterations as 
the optimal trade-off between training time and 
prediction accuracy when using GPR for brain age
prediction.  
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