001     1034883
005     20250213220528.0
024 7 _ |a 10.1103/PhysRevResearch.6.043295
|2 doi
024 7 _ |a 10.34734/FZJ-2025-00006
|2 datacite_doi
024 7 _ |a WOS:001390423900001
|2 WOS
037 _ _ |a FZJ-2025-00006
082 _ _ |a 530
100 1 _ |a Yi, Changjiang
|0 P:(DE-HGF)0
|b 0
|e Corresponding author
245 _ _ |a Large topological Hall effect in a chiral antiferromagnet in hopping transport regime
260 _ _ |a College Park, MD
|c 2024
|b APS
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1739448382_4291
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The combination of structural chirality and magnetism leads to the formation of spin chirality through noncoplanar magnetic structures, resulting in unusual electronic transport properties. The spin chirality generates nonzero Berry curvature in real space, acting as an emergent magnetic field and contributing to the unconventional anomalous Hall effect, known as the geometrical or topological Hall effect (THE). This study unveils the remarkable occurrence of THE in a chiral antiferromagnetic (AFM) semiconductor Eu⁢Ir2⁢P2 in the hopping regime. It exhibits a complex incommensurately spiral AFM ground state due to its chiral crystalline structure, providing fertile ground for the emergence of topologically nontrivial spin textures such as skyrmions. A substantial THE is observed under finite magnetic fields, making Eu⁢Ir2⁢P2 an exceptional case within the ultralow-conductivity hopping regime for investigating the interplay between topologically nontrivial magnetic structures and hopping carriers. Owing to its semiconducting nature, we have formulated a theoretical model based on Mott's variable range-hopping mechanism, effectively elucidating the temperature and magnetic field-dependent behavior of THE. Eu⁢Ir2⁢P2 thus serves as an ideal candidate for comprehending transport properties in the hopping regime and offers a unique opportunity for the implementation of AFM semiconductor-based spintronic devices.
536 _ _ |a 632 - Materials – Quantum, Complex and Functional Materials (POF4-632)
|0 G:(DE-HGF)POF4-632
|c POF4-632
|f POF IV
|x 0
536 _ _ |a 6G4 - Jülich Centre for Neutron Research (JCNS) (FZJ) (POF4-6G4)
|0 G:(DE-HGF)POF4-6G4
|c POF4-6G4
|f POF IV
|x 1
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
650 2 7 |a Magnetism
|0 V:(DE-MLZ)SciArea-170
|2 V:(DE-HGF)
|x 0
650 1 7 |a Magnetic Materials
|0 V:(DE-MLZ)GC-1604-2016
|2 V:(DE-HGF)
|x 0
693 _ _ |0 EXP:(DE-MLZ)External-20140101
|5 EXP:(DE-MLZ)External-20140101
|e Measurement at external facility
|x 0
700 1 _ |a Peshcherenko, Nikolai
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Zhou, Yishui
|0 P:(DE-Juel1)187467
|b 2
|u fzj
700 1 _ |a Samanta, Kartik
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Yang, Qun
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Roychowdhury, Subhajit
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Yanda, Premakumar
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Borrmann, Horst
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Vergniory, Maia G.
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Zhang, Yang
|0 P:(DE-HGF)0
|b 9
700 1 _ |a Su, Yixi
|0 P:(DE-Juel1)130991
|b 10
|u fzj
700 1 _ |a Shekhar, Chandra
|0 P:(DE-HGF)0
|b 11
700 1 _ |a Felser, Claudia
|0 P:(DE-HGF)0
|b 12
|e Corresponding author
773 _ _ |a 10.1103/PhysRevResearch.6.043295
|g Vol. 6, no. 4, p. 043295
|0 PERI:(DE-600)3004165-X
|n 4
|p 043295
|t Physical review research
|v 6
|y 2024
|x 2643-1564
856 4 _ |u https://juser.fz-juelich.de/record/1034883/files/PhysRevResearch.6.043295.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:1034883
|p openaire
|p open_access
|p driver
|p VDB:MLZ
|p VDB
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)187467
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 10
|6 P:(DE-Juel1)130991
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Von Materie zu Materialien und Leben
|1 G:(DE-HGF)POF4-630
|0 G:(DE-HGF)POF4-632
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-600
|4 G:(DE-HGF)POF
|v Materials – Quantum, Complex and Functional Materials
|x 0
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Großgeräte: Materie
|1 G:(DE-HGF)POF4-6G0
|0 G:(DE-HGF)POF4-6G4
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-600
|4 G:(DE-HGF)POF
|v Jülich Centre for Neutron Research (JCNS) (FZJ)
|x 1
914 1 _ |y 2024
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2023-10-27
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2023-10-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2024-02-07T08:08:02Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2024-02-07T08:08:02Z
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Anonymous peer review
|d 2024-02-07T08:08:02Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2025-01-02
915 _ _ |a WoS
|0 StatID:(DE-HGF)0112
|2 StatID
|b Emerging Sources Citation Index
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2025-01-02
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)JCNS-FRM-II-20110218
|k JCNS-FRM-II
|l JCNS-FRM-II
|x 0
920 1 _ |0 I:(DE-Juel1)JCNS-ILL-20110128
|k JCNS-ILL
|l JCNS-ILL
|x 1
920 1 _ |0 I:(DE-Juel1)JCNS-4-20201012
|k JCNS-4
|l JCNS-4
|x 2
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)JCNS-FRM-II-20110218
980 _ _ |a I:(DE-Juel1)JCNS-ILL-20110128
980 _ _ |a I:(DE-Juel1)JCNS-4-20201012
980 _ _ |a UNRESTRICTED
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21