001034884 001__ 1034884
001034884 005__ 20250203103407.0
001034884 037__ $$aFZJ-2025-00007
001034884 041__ $$aEnglish
001034884 1001_ $$0P:(DE-Juel1)130991$$aSu, Yixi$$b0$$ufzj
001034884 1112_ $$aTowards Functional van der Waals magnets by Unlocking Synergies with Orbitronics, Magnonics, Altermagnetism, and Optics$$cPhysikzentrum, Bad Honnef$$d2024-01-02 - 2024-01-05$$g803. WE-Heraeus-Seminar$$wGermany
001034884 245__ $$aTopological magnons in van der Waals ferromagnets CrXTe$_3$ (X = Si, Ge)
001034884 260__ $$c2024
001034884 3367_ $$033$$2EndNote$$aConference Paper
001034884 3367_ $$2DataCite$$aOther
001034884 3367_ $$2BibTeX$$aINPROCEEDINGS
001034884 3367_ $$2DRIVER$$aconferenceObject
001034884 3367_ $$2ORCID$$aLECTURE_SPEECH
001034884 3367_ $$0PUB:(DE-HGF)6$$2PUB:(DE-HGF)$$aConference Presentation$$bconf$$mconf$$s1735827053_31058$$xInvited
001034884 520__ $$aRecently, two-dimensional van der Waals (2D-vdW) honeycomb ferromagnets have emerged as a new platform for topological spin excitations. In this talk, we present a comprehensive inelastic neutron scattering study and theoretical analysis of the spin-wave excitations in 2D-vdW honeycomb ferromagnets CrXTe3 (X = Si, Ge) [1-2]. Our inelastic neutron scattering experiments show clear dispersive magnonic bands and a well-resolved bandgap opening at the high-symmetry band-crossing Dirac K points in the Brillouin zone. Based on the fitting to experimental data within the linear spin wave theory, the observed bandgap opening was ascribed to the antisymmetric exchange Dzyaloshinskii-Moriya interactions (DMI), and a spin Hamiltonian model including the second nearest-neighbor DMI could provide a very good description of the magnonic dispersion in CrXTe3. The size of the topological magnonic gap was found to be strongly dependent on the strength of the DMI that intrinsically originates from spin-orbit coupling in this system. Furthermore, the Chern numbers of the magnonic bands were found to be nonzero, thus indicating that the bandgap opening is indeed topologically nontrivial and corresponding edge states could emerge inside the gap. On the basis of the compelling evidence obtained in our studies, we thus conclude that the exotic topological magnon insulator, which is intrinsically gap tunable, can be ideally realized in the family of 2D vdW honeycomb ferromagnets CrXTe3. We hope that this discovery will stimulate further investigations on potential technological applications in the domain of magnonics and topological spintronics.[1] Fengfeng Zhu, et al., Sci. Adv. 7, eabi7532 (2021)[2] Li-Chuan Zhang, et al., Phys. Rev. B 103, 134414 (2021)
001034884 536__ $$0G:(DE-HGF)POF4-632$$a632 - Materials – Quantum, Complex and Functional Materials (POF4-632)$$cPOF4-632$$fPOF IV$$x0
001034884 536__ $$0G:(DE-HGF)POF4-6G4$$a6G4 - Jülich Centre for Neutron Research (JCNS) (FZJ) (POF4-6G4)$$cPOF4-6G4$$fPOF IV$$x1
001034884 65027 $$0V:(DE-MLZ)SciArea-170$$2V:(DE-HGF)$$aMagnetism$$x0
001034884 65027 $$0V:(DE-MLZ)SciArea-120$$2V:(DE-HGF)$$aCondensed Matter Physics$$x1
001034884 65017 $$0V:(DE-MLZ)GC-1604-2016$$2V:(DE-HGF)$$aMagnetic Materials$$x0
001034884 65017 $$0V:(DE-MLZ)GC-120-2016$$2V:(DE-HGF)$$aInformation and Communication$$x1
001034884 693__ $$0EXP:(DE-MLZ)DNS-20140101$$1EXP:(DE-MLZ)FRMII-20140101$$5EXP:(DE-MLZ)DNS-20140101$$6EXP:(DE-MLZ)NL6S-20140101$$aForschungs-Neutronenquelle Heinz Maier-Leibnitz $$eDNS: Diffuse scattering neutron time of flight spectrometer$$fNL6S$$x0
001034884 693__ $$0EXP:(DE-MLZ)PUMA-20140101$$1EXP:(DE-MLZ)FRMII-20140101$$5EXP:(DE-MLZ)PUMA-20140101$$6EXP:(DE-MLZ)SR7-20140101$$aForschungs-Neutronenquelle Heinz Maier-Leibnitz $$ePUMA: Thermal three axes spectrometer$$fSR7$$x1
001034884 693__ $$0EXP:(DE-Juel1)ILL-IN12-20150421$$5EXP:(DE-Juel1)ILL-IN12-20150421$$eILL-IN12: Cold neutron 3-axis spectrometer$$x2
001034884 693__ $$0EXP:(DE-MLZ)External-20140101$$5EXP:(DE-MLZ)External-20140101$$eMeasurement at external facility$$x3
001034884 8564_ $$uhttps://www.we-heraeus-stiftung.de/veranstaltungen/towards-functional-van-der-waals-magnets-by-unlocking-synergies-with-orbitronics-magnonics-altermagnetism-and-optics/
001034884 909CO $$ooai:juser.fz-juelich.de:1034884$$pVDB$$pVDB:MLZ
001034884 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130991$$aForschungszentrum Jülich$$b0$$kFZJ
001034884 9131_ $$0G:(DE-HGF)POF4-632$$1G:(DE-HGF)POF4-630$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lVon Materie zu Materialien und Leben$$vMaterials – Quantum, Complex and Functional Materials$$x0
001034884 9131_ $$0G:(DE-HGF)POF4-6G4$$1G:(DE-HGF)POF4-6G0$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lGroßgeräte: Materie$$vJülich Centre for Neutron Research (JCNS) (FZJ)$$x1
001034884 9141_ $$y2024
001034884 920__ $$lyes
001034884 9201_ $$0I:(DE-Juel1)JCNS-FRM-II-20110218$$kJCNS-FRM-II$$lJCNS-FRM-II$$x0
001034884 9201_ $$0I:(DE-588b)4597118-3$$kMLZ$$lHeinz Maier-Leibnitz Zentrum$$x1
001034884 980__ $$aconf
001034884 980__ $$aVDB
001034884 980__ $$aI:(DE-Juel1)JCNS-FRM-II-20110218
001034884 980__ $$aI:(DE-588b)4597118-3
001034884 980__ $$aUNRESTRICTED