001     1034884
005     20250203103407.0
037 _ _ |a FZJ-2025-00007
041 _ _ |a English
100 1 _ |a Su, Yixi
|0 P:(DE-Juel1)130991
|b 0
|u fzj
111 2 _ |a Towards Functional van der Waals magnets by Unlocking Synergies with Orbitronics, Magnonics, Altermagnetism, and Optics
|g 803. WE-Heraeus-Seminar
|c Physikzentrum, Bad Honnef
|d 2024-01-02 - 2024-01-05
|w Germany
245 _ _ |a Topological magnons in van der Waals ferromagnets CrXTe$_3$ (X = Si, Ge)
260 _ _ |c 2024
336 7 _ |a Conference Paper
|0 33
|2 EndNote
336 7 _ |a Other
|2 DataCite
336 7 _ |a INPROCEEDINGS
|2 BibTeX
336 7 _ |a conferenceObject
|2 DRIVER
336 7 _ |a LECTURE_SPEECH
|2 ORCID
336 7 _ |a Conference Presentation
|b conf
|m conf
|0 PUB:(DE-HGF)6
|s 1735827053_31058
|2 PUB:(DE-HGF)
|x Invited
520 _ _ |a Recently, two-dimensional van der Waals (2D-vdW) honeycomb ferromagnets have emerged as a new platform for topological spin excitations. In this talk, we present a comprehensive inelastic neutron scattering study and theoretical analysis of the spin-wave excitations in 2D-vdW honeycomb ferromagnets CrXTe3 (X = Si, Ge) [1-2]. Our inelastic neutron scattering experiments show clear dispersive magnonic bands and a well-resolved bandgap opening at the high-symmetry band-crossing Dirac K points in the Brillouin zone. Based on the fitting to experimental data within the linear spin wave theory, the observed bandgap opening was ascribed to the antisymmetric exchange Dzyaloshinskii-Moriya interactions (DMI), and a spin Hamiltonian model including the second nearest-neighbor DMI could provide a very good description of the magnonic dispersion in CrXTe3. The size of the topological magnonic gap was found to be strongly dependent on the strength of the DMI that intrinsically originates from spin-orbit coupling in this system. Furthermore, the Chern numbers of the magnonic bands were found to be nonzero, thus indicating that the bandgap opening is indeed topologically nontrivial and corresponding edge states could emerge inside the gap. On the basis of the compelling evidence obtained in our studies, we thus conclude that the exotic topological magnon insulator, which is intrinsically gap tunable, can be ideally realized in the family of 2D vdW honeycomb ferromagnets CrXTe3. We hope that this discovery will stimulate further investigations on potential technological applications in the domain of magnonics and topological spintronics.[1] Fengfeng Zhu, et al., Sci. Adv. 7, eabi7532 (2021)[2] Li-Chuan Zhang, et al., Phys. Rev. B 103, 134414 (2021)
536 _ _ |a 632 - Materials – Quantum, Complex and Functional Materials (POF4-632)
|0 G:(DE-HGF)POF4-632
|c POF4-632
|f POF IV
|x 0
536 _ _ |a 6G4 - Jülich Centre for Neutron Research (JCNS) (FZJ) (POF4-6G4)
|0 G:(DE-HGF)POF4-6G4
|c POF4-6G4
|f POF IV
|x 1
650 2 7 |a Magnetism
|0 V:(DE-MLZ)SciArea-170
|2 V:(DE-HGF)
|x 0
650 2 7 |a Condensed Matter Physics
|0 V:(DE-MLZ)SciArea-120
|2 V:(DE-HGF)
|x 1
650 1 7 |a Magnetic Materials
|0 V:(DE-MLZ)GC-1604-2016
|2 V:(DE-HGF)
|x 0
650 1 7 |a Information and Communication
|0 V:(DE-MLZ)GC-120-2016
|2 V:(DE-HGF)
|x 1
693 _ _ |a Forschungs-Neutronenquelle Heinz Maier-Leibnitz
|e DNS: Diffuse scattering neutron time of flight spectrometer
|f NL6S
|1 EXP:(DE-MLZ)FRMII-20140101
|0 EXP:(DE-MLZ)DNS-20140101
|5 EXP:(DE-MLZ)DNS-20140101
|6 EXP:(DE-MLZ)NL6S-20140101
|x 0
693 _ _ |a Forschungs-Neutronenquelle Heinz Maier-Leibnitz
|e PUMA: Thermal three axes spectrometer
|f SR7
|1 EXP:(DE-MLZ)FRMII-20140101
|0 EXP:(DE-MLZ)PUMA-20140101
|5 EXP:(DE-MLZ)PUMA-20140101
|6 EXP:(DE-MLZ)SR7-20140101
|x 1
693 _ _ |0 EXP:(DE-Juel1)ILL-IN12-20150421
|5 EXP:(DE-Juel1)ILL-IN12-20150421
|e ILL-IN12: Cold neutron 3-axis spectrometer
|x 2
693 _ _ |0 EXP:(DE-MLZ)External-20140101
|5 EXP:(DE-MLZ)External-20140101
|e Measurement at external facility
|x 3
856 4 _ |u https://www.we-heraeus-stiftung.de/veranstaltungen/towards-functional-van-der-waals-magnets-by-unlocking-synergies-with-orbitronics-magnonics-altermagnetism-and-optics/
909 C O |o oai:juser.fz-juelich.de:1034884
|p VDB:MLZ
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)130991
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Von Materie zu Materialien und Leben
|1 G:(DE-HGF)POF4-630
|0 G:(DE-HGF)POF4-632
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-600
|4 G:(DE-HGF)POF
|v Materials – Quantum, Complex and Functional Materials
|x 0
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Großgeräte: Materie
|1 G:(DE-HGF)POF4-6G0
|0 G:(DE-HGF)POF4-6G4
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-600
|4 G:(DE-HGF)POF
|v Jülich Centre for Neutron Research (JCNS) (FZJ)
|x 1
914 1 _ |y 2024
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)JCNS-FRM-II-20110218
|k JCNS-FRM-II
|l JCNS-FRM-II
|x 0
920 1 _ |0 I:(DE-588b)4597118-3
|k MLZ
|l Heinz Maier-Leibnitz Zentrum
|x 1
980 _ _ |a conf
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)JCNS-FRM-II-20110218
980 _ _ |a I:(DE-588b)4597118-3
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21