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1 Introduction

The linear response of the effective action to the change of the space-time metric specifies
mechanical properties of particles. In particular, static characteristics, like the mass, spin and
the D-term correspond to the hadron gravitational form factors (GFFs) at zero momentum
transfer [1, 2]. In recent years, GFFs have attracted increasing attention for characterizing
properties of hadrons with different spins due to their connection to generalized parton
distributions (GPDs). Parameterizations of the energy-momentum tensor (EMT) matrix
elements in terms of the GFFs have been considered for spin-0 [2], spin-1 [3–5], and for
arbitrary-spin hadrons [6]. Mechanical properties, energy and spin densities as well as spatial
distributions of the pressure and shear forces have been introduced for spin-0 and spin-1/2
hadrons in ref. [7], and generalized to higher-spin systems in refs. [5, 8, 9].

The nucleon GFFs can be extracted from experimental measurements of exclusive
processes like deeply virtual Compton scattering (DVCS) [10, 11] and hard exclusive meson
production [12]. The connection to GFFs can be seen in the QCD description of these processes,
where the symmetric EMT appears naturally in the operator product expansion [10]. The
first results of measurements of the D-term in hard QCD processes for the nucleon and
the pion can be found in refs. [13–16]. Recently, the mechanical radius of the proton has
been determined from experimental data on DVCS cross sections and polarized electron
beam spin asymmetries [17]. The GFFs have also been studied in lattice QCD, see, e.g.,
refs. [18–23] and references therein.

While the electromagnetic p → ∆+ transition has been extensively studied over the
past two decades on both the theoretical and experimental sides, see, e.g., refs. [24–28],
the gravitational p → ∆+ transition form factors (GTFFs) gained attention only since a
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few years [29]. The GTFFs can be accessed experimentally through their connection to the
transition GPDs [30, 31], obtained by expanding the non-local QCD operators with various
quantum numbers. Non-perturbative properties of the nucleon-∆ transition GPDs have been
studied, e.g., by applying the approach of large Nc limit of QCD, as discussed in section 2.7
of ref. [32]. In ref. [33], the transition GPDs have been connected with the DVCS amplitude
within the process e−N → e−γπN, while in ref. [34] these quantities have been studied using
exclusive electroproduction of π−∆++.

In ref. [29], the matrix element of the symmetric EMT corresponding to the p → ∆+

transition has been studied for the first time, where a parametrization for the transitions
1
2
± → 3

2
± and 1

2
± → 3

2
∓ has been suggested in terms of five conserved and four non-conserved

GTFFs. The first calculations of the GTFFs of the N → ∆ transition were done in ref. [35]
using the QCD light-cone sum rules. The interpretation and understanding of the GTFFs
have generated much interest recently. In particular, the concept of QCD angular momentum
(AM) [36–38] has been extended to N → ∆ transitions in ref. [39]. These quantities were
calculated in the 1/Nc expansion, and their connection to the transition GPDs of the
hard exclusive electroproduction processes was discussed. Properties of the AM of various
transitions were further explored in ref. [40], where their decomposition into the orbital AM
and the intrinsic spin components was studied.

For systematic studies of low-energy hadronic processes involving the ∆ resonances and
induced by gravity one may rely on the effective chiral Lagrangian for the nucleons, pions,
photons and delta resonances in curved spacetime. Effective Lagrangian of pions in curved
spacetime has been derived in ref. [41], and the GFFs of the pion are considered in ref. [42].
The leading and subleading effective chiral Lagrangians for nucleons, delta resonances and
pions in curved spacetime, along with the calculation of the leading one-loop contributions to
the GFFs of the nucleons and the ∆ resonances can be found in refs. [43, 44].

In this work we calculate the GTFFs of the p → ∆+ transition in the framework of
manifestly Lorentz-invariant chiral perturbation theory (ChPT) up-to-and-including the third
order in the small-scale expansion [45]. As gravity conserves isospin, such kind of processes are
possible only if the isospin symmetry is broken, i.e. if mu ̸= md and/or if the electromagnetic
interaction is taken into account. We include both effects at the corresponding leading orders
to calculate the one-loop contributions to the GTFFs.

Our paper is organized as follows: in section 2, we specify the relevant terms of the
effective Lagrangian of the nucleons, pions, photons and delta resonances in curved spacetime.
We calculate the GTFFs of the p→ ∆+ transition in section 3. The results of our calculations
are summarized in section 4. In the appendices, we list the isospin symmetry breaking terms
in the action and the expression for the parts of the EMT, which are relevant for our study.

2 Effective Lagrangian in curved spacetime and the energy-momentum
tensor

The action corresponding to the leading-order effective Lagrangian for nucleons, pions, photons
and delta resonances, interacting with an external gravitational field, can be easily obtained
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from the corresponding expressions in flat spacetime [41, 46–49]. It has the following form:

S(2)
γ =

∫
d4x

√
−g

{
−1
4FµνF

µν +
m2

γ

2 AµA
µ
}
, (2.1)

S(2)
π =

∫
d4x

√
−g

{
F 2

4 Tr(DµU(DµU)†) + F 2

4 Tr(χU † + Uχ†)
}
, (2.2)

S
(1)
Nπ =

∫
d4x

√
−g

{
Ψ̄ iγµ

↔
∇µΨ−mΨ̄Ψ + gA

2 Ψ̄γµγ5uµΨ
}
, (2.3)

S
(1)
∆π = −

∫
d4x

√
−g
{
Ψ̄iµ iγα

↔
∇αΨi

µ −m∆ Ψ̄i
µΨiµ − gλσ

(
Ψ̄i

µiγ
µ
↔
∇λΨi

σ + Ψ̄i
λiγ

µ
↔
∇σΨi

µ

)
+iΨ̄i

µγ
µγαγν

↔
∇αΨi

ν +m∆Ψ̄i
µγ

µγνΨi
ν + g1

2 gµνΨ̄i
µuαγ

αγ5Ψi
ν

+g2
2 Ψ̄i

µ (uµγν + uνγµ) γ5Ψi
ν + g3

2 Ψ̄i
µuαγ

µγαγ5γ
νΨi

ν

}
, (2.4)

S
(1,2)
∆Nπ =

∫
d4x

√
−g

{
−gπN∆Ψ̄ (gµν − γµγν)uµ,iΨν,i

+d(2)
3 iΨ̄f iµν

+ γ5γµ

(
gνλ −

[
zn + 1

2

]
γνγλ

)
Ψiλ + H.c.

}
. (2.5)

The ∆ resonances are represented by the Rarita-Schwinger fields Ψµ
i , which contain the

isospin-3/2 projectors ξ
3
2
ij = δij − τiτj/3, i.e. they satisfy the condition Ψµ

i = ξ
3
2
ijΨ

µ
j . Further,

gµν is the metric tensor field and γµ ≡ ea
µγa, where ea

µ denote the vielbein gravitational
fields. In the photon Lagrangian we included the mass term m2

γ AµA
µ/2 to regularize infrared

divergences, and the limit mγ → 0 should be performed at the end. However, as it turns
out after the calculation, there are actually no IR divergences and this term is thus of no
relevance here. In eqs. (2.4) and (2.5), zn is an off-shell parameter, which we choose equal to
zero in our calculations, and we have set the point-transformation parameter A = −1 [50].
The building blocks of the effective Lagrangian are given as follows:

↔
∇µ = 1

2(
→
∇µ −

←
∇µ) ,

→
∇µΨi

ν = ∇ij
µ Ψj

ν =
[
δij∂µ + δijΓµ − iδijv(s)

µ − iϵijkTr
(
τkΓµ

)
+ i

2δ
ijωab

µ σab

]
Ψj

ν − Γα
µνΨi

α,

Ψ̄i
ν

←
∇µ = ∇ij

µ Ψj
ν = Ψ̄j

ν

[
δij∂µ − δijΓµ + iδijv(s)

µ + iϵijkTr
(
τkΓµ

)
− i

2δ
ijωab

µ σab

]
− Ψ̄i

αΓα
µν ,

→
∇µΨ = ∂µΨ+ i

2 ω
ab
µ σabΨ+

(
Γµ − iv(s)

µ

)
Ψ ,

Ψ̄
←
∇µ = ∂µΨ̄− i

2 Ψ̄σab ω
ab
µ − Ψ̄

(
Γµ − iv(s)

µ

)
,

ωab
µ = −1

2 g
νλea

λ

(
∂µe

b
ν − eb

σΓσ
µν

)
,

Γλ
αβ = 1

2 g
λσ (∂αgβσ + ∂βgασ − ∂σgαβ) ,
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fµν
+ = uFµν

L u† + u†Fµν
R u ,

Fµν
R = ∂µrν − ∂νrµ − i[rµ, rν ] ,

Fµν
L = ∂µlν − ∂ν lµ − i[lµ, lν ] ,

f iµν
+ = 1

2Tr
(
fµν

+ τ i
)
,

χ+ = u†χu† + uχ†u,

χ̂+ = χ+ − 1
2⟨χ+⟩,

χ = 2B0(s+ ip),

uµ,i =
1
2Tr

(
uµτ

i
)
. (2.6)

Notice that since the gravitational interaction respects the isospin symmetry, the amplitude
of the p→ ∆+ transition receives non-vanishing contributions only via the isospin-symmetry
breaking effects. In appendix A, the above action is re-written in particle basis and the
corresponding EMT is also specified.

3 Gravitational transition form factors to one loop

Below, we calculate the leading one-loop contributions to the matrix elements of the EMT
for the one-particle states of the delta resonance and the nucleon. These matrix elements are
extracted from the residues of Green’s functions, which have complex poles corresponding
to the unstable ∆ states [51]. To organize different contributions according to a systematic
expansion we employ the so-called ϵ-counting scheme (also referred to as the small scale
expansion) [45],1 i.e. the pion lines count as of chiral order Q−2, where Q denotes the soft
scale of the order of the pion mass. Further, the nucleon and delta lines count as Q−1,
interaction vertices originating from the effective Lagrangian of order N count also as of
chiral order QN , while the vertices generated by the EMT, which are listed in appendix B,
have the orders corresponding to the number of the quark mass insertions and derivatives
acting on the pion fields. Derivatives acting on the nucleon and delta fields count as of
chiral order Q0. The momentum transfer between the initial and final states counts as of
chiral order Q, therefore in those terms of the EMT which involve full derivatives, these
derivatives also count as chiral order Q. Integration over loop momenta is counted as chiral
order Q4. Furthermore, the delta-nucleon mass difference also counts as order Q within the
ϵ-counting scheme. In diagrams involving electromagnetic radiative corrections, we assign
the chiral order Q−2 to the photon line and count the electric charge e as chiral order Q.
It is understood that the above described power counting for loop diagrams is realized in
the results of manifestly Lorentz-invariant calculations only after performing an appropriate
renormalization. We apply the EOMS scheme of refs. [53, 54].

1For an alternative power counting in ChPT with delta resonances see ref. [52].
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The matrix element of the total EMT for the transition p→ ∆+ can be parameterized
in terms of five form factors as follows [29]:

⟨∆, pf , sf |Tµν |N, pi, si⟩

= ūα(pf , sf )
{
F1(t)

(
gα{µP ν} +

m2
∆+ −m2

p

∆2 gµν∆α −
m2

∆+ −m2
p

2∆2 gα{µ∆ν} − 1
∆2P

{µ∆ν}∆α

)

+F2(t)
(
PµP ν∆α +

(m2
∆+ −m2

p)2

4∆2 gµν∆α −
m2

∆+ −m2
p

2∆2 P {µ∆ν}∆α

)
+F3(t)

(
∆µ∆ν −∆2gµν

)
∆α

+F4(t)
(
gα{µγν} + 2(mp +m∆+)

∆2 gµν∆α − mp +m∆+

∆2 gα{µ∆ν} − 1
∆2 γ

{µ∆ν}∆α
)

+F5(t)
(
P {µγν}∆α +

(m2
∆+ −m2

p)(mp +m∆+)
∆2 gµν∆α − mp +m∆+

∆2 P {µ∆ν}∆α

−
m2

∆+ −m2
p

2∆2 γ{µ∆ν}∆α

)}
γ5u(pi, si) , (3.1)

where mp and m∆+ are the proton and the ∆+ masses, respectively, P = (pf + pi) /2,
∆ = pf − pi and t = ∆2. The curly brackets in the superscripts stand for symmetrization
of the involved indices, e.g., P {µγν} = Pµγν + P νγµ. As mentioned in the introduction, if
the isospin symmetry is not broken, the above amplitude is zero.

3.1 One-loop contributions of the strong interaction to the gravitational
transition form factors

To obtain the one-loop contributions to the GTFFs due to strong isospin-breaking interactions
one has to compute 25 diagrams, where there are only 10 topologically differing diagrams
and the rest can be obtained by just changing the masses and overall factors. These 10
diagrams are depicted in figure 1. The isospin symmetry breaking terms of the effective
Lagrangian, which contribute to these one-loop diagrams, are specified in appendix A. We
performed the calculations in the particle basis. In the limit of the exact isospin symmetry,
the contributions of the different diagrams exactly cancel each other. Taking into account
the dominant isospin breaking effect, we find that obtained form factors are proportional
to the mass differences within iso-multiplets of nucleons, pions and delta resonances. The
leading contributions are given by terms proportional to the pion mass differences. This is
because these contributions involve integrals, whose integrands are proportional to

∼ 1
p2 −M2

π+
− 1
p2 −M2

π0
≃

M2
π+ −M2

π0(
p2 −M2

π+

) (
p2 −M2

π0

) , (3.2)

where each of the propagators originates from different diagrams that would cancel each
other in the isospin limit. As the mass difference M2

π+ −M2
π0 counts as of chiral order two,

the right-hand side of eq. (3.2) has the same order as each of the terms in the left-hand
side. That is, the total contribution of these diagrams, which is proportional to the pion
mass difference squared, has the same order as the individual diagrams. On the other hand,
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7) 8)

9) 10)

1)

5)

2)

6)

3) 4)

Figure 1. Strong contributions to the gravitational transition form factors. Solid and double lines
correspond to nucleons and ∆ resonances, respectively. Dashed lines represent the pions, while the
curly lines correspond to gravitons. Initial and final states refer to p and ∆+, respectively, while the
baryon lines inside loops refer to propagators of one of the following particles: {∆++,∆+,∆0, p, n}.
Notice that the total contribution of these diagrams vanishes in the limit of exact isospin symmetry.

the contributions proportional to the proton-neutron mass difference are given by integrals,
whose integrands are proportional to

∼ 1
/p−mp

− 1
/p−mn

≃ mp −mn(
/p−mp

) (
/p−mn

) . (3.3)

As the mass difference mp −mn counts as chiral order two, and the nucleon propagators as
order minus one, the right-hand side of eq. (3.3) has one order higher than each of the terms
on the left-hand side. That is, the total contribution of diagrams is suppressed by Q relative
to the contributions of the individual diagrams. Analogous power counting holds also for the
contributions proportional to the mass differences of the delta resonances. Notice further
that isospin breaking vertices other than the mass terms start contributing at higher orders.

Diagrams 1, 2, 4, 5, 6 and 8 in figure 1 start contributing at chiral order three while the
diagrams 3, 7, 9 and 10 start contributing at chiral order two. This is because the leading-order
contribution to the gravitational-source-baryon-baryon vertex has order zero.2 Thus the
diagrams in figure 1 give contributions of orders two and three. We have verified that the
one-loop order result of diagrams in figure 1 does not contain power counting violating
contributions and all ultraviolet divergences can be absorbed into redefinition of the low-
energy coupling constants of the effective Lagrangian. The obtained results for the form
factors are too involved to be given as analytic expressions but are available from the authors
upon request in the form of a Mathematica notebook. The same applies also to the results
of the radiative corrections considered in the next subsection.

2Actually the gravitational-source-baryon-baryon vertex originating from the leading-order Lagrangian has
two contributions, one of the order zero and the other of the order one. This means that diagrams 3, 7, 9 and
10 contribute to two different chiral orders (2 and 3). These two contributions cannot be considered separately,
because otherwise the current will not be conserved. This needs to be carefully taken into account when
specifying the (possible) power-counting violating terms.
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Figure 2. Electromagnetic contributions to the transition form factors. Solid and double solid lines
correspond to nucleons and ∆ resonances, respectively. Wavy lines denote photons, while curly lines
represent gravitons.

3.2 One-loop radiative corrections to the gravitational transition form factors

To obtain the one-loop electromagnetic corrections to the transition form factors one has to
compute the diagrams contributing up to order four, shown in figure 2. The chiral power
counting for figure 2 is similar to that for figure 1. In this calculation we do not distinguish
between the masses of the ∆ states and between the masses of the proton and the neutron,
i.e. we set m∆++ = m∆+ = m∆0 = m∆− and mp = mn.

Analogously to the strong-interaction contributions, we found that the one-loop order
result of diagrams shown in figure 2 does not involve power-counting violating terms, and all
ultraviolet divergences can be absorbed into redefinition of the low-energy coupling constants
of the most general effective Lagrangian.

3.3 Numerical results for the gravitational transition form factors

In figures 3 and 4, we present the numerical results of the obtained strong and electromagnetic
contributions to the real and imaginary parts of the transition form factors, respectively.
Notice here that the imaginary parts of the calculated form factors are generated solely by
the loop contributions with internal nucleon lines. For the numerical results, we used the
following values of the involved parameters:

gA = 1.289, g = 1.35, mπ0 = 0.135, mp = 0.938, mn = 0.940,
m∆ = 1.232, F = 0.092, mπ+ = 0.140, m∆++ = 1.231, m∆+ = m∆,

m∆0 = 1.233, g1 = 9gA/5, e = 0.303 , d
(2)
3 = 2.72GeV−1 ,

(3.4)
where the various masses and the pion decay constant F are given in GeV. We used the SU(6)
symmetry estimation for the coupling constants g1, gA and g taken from ref. [55], for the
masses of delta resonances we used estimations of refs. [56, 57], d(2)

3 corresponds to b1/2 of
ref. [58], while the remaining values have been taken from the PDG [59].
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Figure 3. The real parts of the p→ ∆+ transition form factors. Dash-dotted (black), dashed (blue)
and solid (red) lines correspond to the form factors containing contributions of loop diagrams with
inner pion and nucleon lines only, diagrams with inner pion and nucleon lines plus radiative corrections,
and all loop contributions, respectively.

The plots demonstrate that the diagrams with radiative corrections give smaller contri-
butions than the ones with pion loops in line with the power counting estimations. On the
other hand the groups of diagrams with internal nucleon and delta lines give comparable
contributions.

4 Conclusions and outlook

In the framework of manifestly Lorentz-invariant ChPT for pions, nucleons, photons and
the delta resonances interacting with an external gravitational field, we calculated the
leading one-loop contributions to the matrix element of the EMT corresponding to the
p → ∆+ transition and extracted the resulting gravitational transition form factors. As
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Figure 4. Imaginary parts of the p → ∆+ transition form factors. Dash-dotted (black), and solid
(red) lines correspond to the form factors containing contributions of loop diagrams with inner pion
and nucleon lines only, and diagrams with inner pion and nucleon lines plus radiative corrections,
respectively.

the gravitational interaction respects the isospin symmetry, the amplitude of the p → ∆+

transition receives non-vanishing contributions due to isospin symmetry breaking. The results
of the current work take into account the leading-order electromagnetic and strong isospin-
breaking effects. Ultraviolet divergences and power counting violating pieces generated by
loop diagrams in the manifestly Lorentz-invariant formulation of ChPT can be treated using
the EOMS renormalization scheme of refs. [53, 54]. However, at the order of our calculations,
the one-loop contributions to the form factors are found to be free of contributions that violate
the chiral power counting. This is consistent with the absence of tree-level contributions
at the considered order. For this reason, our results involve no free parameters and can be
regarded as predictions of ChPT. Notice, however, that the empirical information on the mass
splittings between the ∆ resonance states, which enters as an input in our calculations, is
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presently rather poor. Numerical results for the obtained transition form factors demonstrate
that the electromagnetic and strong isospin violating effects give contributions of comparable
sizes. This holds true for contributions with both internal nucleon and delta lines.
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A Isospin-symmetry breaking terms

To obtain the leading isospin breaking effects due to the strong interaction we distinguish
between the masses of the delta resonances, and also between the masses of the proton and
the neutron, and the charged and neutral pions. We rewrite the action using the physical
basis, instead of the isospin basis, by writing the fields explicitly as follows:

Ψ =
(
Ψp

Ψn

)
,

Ψµ,1 = 1√
2

 1√
3∆

0
µ −∆++

µ

∆−µ − 1√
3∆

+
µ

 , Ψµ,2 = − i√
2

 1√
3∆

0
µ +∆++

µ

∆−µ + 1√
3∆

+
µ

 , Ψµ,3 =
√

2
3

(
∆+

µ

∆0
µ

)
,

π1 = 1√
2

(
π+ + π−

)
, π2 = i√

2

(
π+ − π−

)
, π3 = π0. (A.1)

We substitute the above definition of the fields into eqs. (2.2), (2.3), (2.4) and (2.5). The terms
relevant for the leading one-loop order contributions to the p→ ∆+ transition are given by

S(2)
π =

∫
d4x

√
−g

{1
2∂µπ

0∂µπ0 − 1
2M

2
0π

0π0 + ∂µπ
+∂µπ− −M2

π+π+π−
}
, (A.2)

S
(1)
Nπ =

∫
d4x

√
−g

{
Ψ̄p iγ

µ
↔
∇µΨp −mpΨ̄pΨp + Ψ̄n iγ

µ
↔
∇µΨn −mnΨ̄nΨn

+ gA

2F
(
∂µπ

0
[
Ψ̄nγ

µγ5Ψn − Ψ̄pγ
µγ5Ψp

]
−
√
2
[
∂µπ

−Ψ̄nγ
µγ5Ψp + ∂µπ

+Ψ̄pγ
µγ5Ψn

])}
,

(A.3)
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S
(1)
∆π = −

∫
d4x

√
−g
{[ ∑

i∈{++,+,0,−}
∆̄iµ iγα

↔
∇α∆i

µ −m∆i ∆̄i
µ∆iµ

−gλσ
(
∆̄i

µiγ
µ
↔
∇λ∆i

σ + ∆̄i
λiγ

µ
↔
∇σ∆i

µ

)
+ i∆̄i

µγ
µγαγν

↔
∇α∆i

ν +m∆i∆̄i
µγ

µγν∆i
ν

]
+ 1
6F

[
∆̄0

µO
µνα
1 ∆0

ν∂απ
0 −

√
6∆̄−µO

µνα
1 ∆0

ν∂απ
− − 2

√
2∆̄+

µO
µνα
1 ∆0

ν∂απ
+

−
√
6∆̄0

µO
µνα
1 ∆−ν ∂απ

+ − 2
√
2∆̄0

µO
µνα
1 ∆+

ν ∂απ
− + 3∆̄−µO

µνα
1 ∆−ν ∂απ

0

−∆̄+
µO

µνα
1 ∆+

ν ∂απ
0 −

√
6∆̄+

µO
µνα
1 ∆++

ν ∂απ
− −

√
6∆̄++

µ Oµνα
1 ∆+

ν ∂απ
+

−3∆̄++
µ Oµνα

1 ∆++
ν ∂απ

0
]}

, (A.4)

S
(1)
∆Nπ =

∫
d4x

√
−g gπn∆

F

{
Ψ̄n∂µπ

+Oµν
2 ∆−ν − Ψ̄p∂µπ

−Oµν
2 ∆++

ν + 1√
3

(√
2 Ψ̄n∂µπ

0Oµν
2 ∆0

ν

−Ψ̄n∂µπ
−Oµν

2 ∆+
ν + Ψ̄p∂µπ

+Oµν
2 ∆0

ν +
√
2 Ψ̄p∂µπ

0Oµν
2 ∆+

ν

)}
, (A.5)

where Oµνα
1 = g1γ

αγ5gµν + g2(gµαγνγ5 + gναγµγ5) + g3γ
µγαγ5γν and Oµν

2 = gµν − γµγν .
To arrive at these results, we expanded the matrix u of pion fields and kept only the first
nontrivial term, i.e. u = 1 + i/(2F )τ iπi + O(1/F 2).

The mass splittings within iso-multiplets are not just due to strong isospin breaking but
also receive important contributions from the electromagnetic interaction. However, there is
no point at separating these contributions here, and such a separation is anyway afflicted
with some uncertainties, see e.g. the pedagogical discussion in ref. [60].

To obtain the leading isospin breaking effects due to the diagrams with radiative cor-
rections (i.e. with photon propagators) we do not distinguish between the masses of the
isospin partners, i.e. we take m∆++ = m∆+ = m∆0 = m∆− , and mp = mn. For the external
sources, we take the following expressions:

rµ = lµ = −e Aµ
τ3
2 , (A.6)

vs
µ = −e2 Aµ, (A.7)

where e is the electric charge of the proton.

B The energy-momentum tensor

Using the definition of the EMT for bosonic matter fields interacting with the gravitational
metric field,

Tµν(g, ψ) = 2√
−g

δSm
δgµν

, (B.1)
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we obtain in flat spacetime from the action terms of eqs. (2.1) and (2.2):

T (2)
γ,µν = Fα

µ Fαν +m2
γAµAν + ηµν

(1
4FαβF

αβ −
m2

γ

2 AαA
α
)
, (B.2)

T (2)
π,µν = F 2

4 Tr(DµU(DνU)†)− ηµν

2

{
F 2

4 Tr(DαU(DαU)†) + F 2

4 Tr(χU † + Uχ†)
}

+(µ↔ ν) , (B.3)

where ηµν is the Minkowski metric tensor with the signature (+,−,−,−). For the fermionic
fields interacting with the gravitational vielbein fields we use the definition [61]

Tµν(g, ψ) = 1
2e

[
δS

δeaµ
ea

ν + δS

δeaν
ea

µ

]
. (B.4)

The action of eq. (2.3) leads to the following expression for the EMT in flat spacetime:

T
(1)
N,µν = i

2Ψ̄ γµ

↔
DνΨ− ηµν

2
(
Ψ̄ iγα

↔
DαΨ−mΨ̄Ψ

)
+ (µ↔ ν) , (B.5)

while eqs. (2.4) and (2.5) lead to the following expressions:

T
(1)
∆π,µν = −Ψ̄i

µ iγ
α
↔
DαΨi

ν + Ψ̄i
α iγ

α
↔
DµΨi

ν + Ψ̄i
µ iγ

α
↔
DνΨi

α +m∆Ψ̄i
µΨi

ν − i

2 Ψ̄i
α γµ

↔
DνΨiα

+ i

2
(
Ψ̄i

µ γν

↔
DαΨiα + Ψ̄iα γν

↔
DαΨi

µ − Ψ̄i
µ γνγ

αγβ

↔
DαΨi,β − Ψ̄i

αγ
αγνγ

β
↔
DµΨi

β

−Ψ̄i
αγ

αγβγν

↔
DβΨi

µ

)
+ i

4 ∂
λ
[
Ψ̄i,α

(
γµηλ[αηβ]µ + ηλµην[αγβ] + ηµνηλ[βγα]

)
Ψi,β

]
−m∆

2
(
Ψ̄i

µ γνγ
αΨi

α + Ψ̄i
α γ

αγνΨi
µ

)
− g1

4
[
2Ψ̄i

µuαγ
αγ5Ψi

ν + Ψ̄i,αuµγνγ5Ψi
α

]
−g2

4
[
2Ψ̄i

µuνγ
αγ5Ψi

α + 2Ψ̄i
αuνγ

αγ5Ψi
µ + Ψ̄i,αuαγνγ5Ψi

µ + Ψ̄i
µuαγνγ5Ψiα

]
−g3

4
[
Ψ̄i

µuαγνγ
αγ5γ

βΨi
β + Ψ̄i

βuαγ
βγαγ5γνΨi

µ + Ψ̄i
αuµγ

αγνγ5γ
βΨi

β

]
+ηµν

2

[
Ψ̄i

α iγ
β
↔
DβΨiα −m∆ Ψ̄i

αΨiα − Ψ̄i
αiγ

α
↔
DβΨiβ − Ψ̄iαiγβ

↔
DαΨi

β

+iΨ̄i
ργ

ργαγλ
↔
DαΨi

λ +m∆Ψ̄i
αγ

αγβΨi
β + g1

2 Ψ̄i
βuαγ

αγ5Ψiβ

+g2
2 Ψ̄iα (uαγβ + uβγα) γ5Ψiβ + g3

2 Ψ̄i
αuβγ

αγβγ5γ
λΨi

λ

]
+ (µ↔ ν) , (B.6)

T
(1,2)
πN∆,µν = gπN∆

{1
2 ηµν

[
Ψ̄i

αu
α
i Ψ+ Ψ̄uα

i Ψi
α − Ψ̄i

αγ
αγβui

βΨ− Ψ̄γβγαui
βΨi

α

]
− Ψ̄i

µu
i
νΨ

−Ψ̄ui
νΨi

µ + 1
2
[
Ψ̄i

µγνγ
αui

αΨ+ Ψ̄i
αγ

αγµu
i
νΨ+ Ψ̄γαγνu

i
αΨi

µ + Ψ̄γµγ
αui

νΨi
α

]}
+ i

2d
(2)
3

{
Ψ̄f i

+,µβγ5γνΨ̃iβ + 2Ψ̄f i
+,αµγ5γ

αΨi
ν − ηµνΨ̄f i

+,αβγ5γ
αΨ̃iβ

−
[
zn + 1

2

] (
Ψ̄f i

+,αµγ5γ
αγνγ

βΨi
β + Ψ̄f i

+,αβγ5γ
αγβγµΨi

ν

)}
+(µ↔ ν) , (B.7)

where the covariant derivatives D acting on spin-1/2 and spin-3/2 fields coincide with ∇ of
eq. (2.6) with Γβ

µν = ωab
µ = 0. The superscripts in the expressions of EMT indicate the orders

which are assigned to the corresponding terms of the action (effective Lagrangian).
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