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We present the first ab initio lattice calculations of spin and density correlations in hot neutron matter
using high-fidelity interactions at next-to-next-to-next-to-leading order in chiral effective field theory.
These correlations have a large impact on neutrino heating and shock revival in core-collapse supernovae
and are encapsulated in functions called structure factors. Unfortunately, calculations of structure factors
using high-fidelity chiral interactions were well out of reach using existing computational methods. In this
Letter, we solve the problem using a computational approach called the rank-one operator (RO) method.
The RO method is a general technique with broad applications to simulations of fermionic many-body
systems. It solves the problem of exponential scaling of computational effort when using perturbation
theory for higher-body operators and higher-order corrections. Using the RO method, we compute the
vector and axial static structure factors for hot neutron matter as a function of temperature and density. The
ab initio lattice results are in good agreement with virial expansion calculations at low densities but are
more reliable at higher densities. Random phase approximation codes used to estimate neutrino opacity in
core-collapse supernovae simulations can now be calibrated with ab initio lattice calculations.

DOI: 10.1103/PhysRevLett.132.232502

Introduction.—Core-collapse supernovae (CCSNe) are
catastrophic events heralding the death of massive stars.
Under enormous gravitational pressure, the nickel-iron
core converts to neutron-rich matter via inverse beta decay.
This results in an infall of stellar matter followed by a
violent rebound from the ultradense core. Meanwhile,
copious numbers of neutrinos are produced. This neutrino
flux provides energy to the shock wave and increases the
likelihood of an explosion. Since the neutrino-nucleon
scattering rates are greatly modified by the spin and
density correlations in neutron-rich matter, understanding
these correlations is important for modeling CCSNe explo-
sions [1–4]. Early efforts in studying in-medium neutrino-
nucleon scattering have used mean field methods such
as the Hartree-Fock and random phase approximations
(RPA) [5–8]. Extended virial expansions provide model-
independent predictions in the limit of low densities and
high temperatures [7–11].

More recently, ab initio lattice calculations of neutron
matter and its structure factorswere performed using pionless
effective field theory at leading order, both in the limit of
infinite scattering length [12] and at the physical scattering
length [13]. These calculations are suitable for environments
where the neutrons have momenta less than 100MeV.We are
using natural unitswhere the speed of light, c, reduced Planck
constant, ℏ, and Boltzmann constant, kB, are set to unity. In
order to describe neutronmatter at densities and temperatures
relevant for CCSNe, a good description of nucleons up to
300 MeV momenta is needed. The standard theoretical
framework for this regime is provided by chiral effective
field theory, where the forces mediated by the exchange of
pions are treated explicitly [14,15].
Recent advances in chiral effective field theory inter-

actions and advanced quantum many-body methods
have pushed forward the frontiers of ab initio nuclear
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calculations. Calculations are now possible for light nuclei
[16–21], medium-mass [22–26] and heavy nuclei [27],
and nuclear matter [28–31], as well as finite temperature
systems [32–37]. In this Letter, we compute the spin and
density correlations in neutron matter at various temper-
atures and densities using lattice chiral effective field theory
at next-to-next-to-next-to leading order (N3LO). Such
N3LO lattice calculations were previously not possible
due to the many perturbation theory corrections required
and the lack of a practical method for computing the
corrections efficiently.
In this Letter, we introduce a new computational

approach called the rank-one operator (RO) method. In
many-body theory, rank-one operators are one-body oper-
ators where one creation operator multiplies one annihila-
tion operator. As we will show, rank-one operators are
special since they can be inserted into auxiliary-field
Monte Carlo calculations without the need to compute
derivatives with respect to parameters. The ROmethod uses
this property of rank-one operators to solve the problem of
exponential scaling of computational effort when using
perturbation theory for higher-body operators and higher-
order corrections. It can be used with Monte Carlo calcu-
lations of fermionic systems in nuclear physics, condensed
matter, ultracold atomic gases, and quantum chemistry.
Methods.—Nuclear lattice effective theory (NLEFT) is

an ab initio method that combines effective field theory
with lattice Monte Carlo simulations [16,23,35,38–44].
The use of unrestricted Monte Carlo simulations allows
for investigations of strong many-body correlations such as
clustering [43,45,46]. Moreover, the pinhole trace algo-
rithm [35] allows for ab initio calculations of nuclear
thermodynamics.
For fixed neutron number N and temperature T, the

expectation value of an observable O in the canonical
ensemble (CE) is given by

hOiN ¼ ZOðβ; NÞ
Zðβ; NÞ ¼ TrNðe−βHOÞ

TrNðe−βHÞ
; ð1Þ

where β¼T−1 is the inverse of temperature, H is the
Hamiltonian, and TrN is the trace over all the N-neutron
states. The canonical partition function Zðβ; NÞ, can
be written explicitly in the single-particle basis
ci ¼ ðni; σi; τiÞ as

Zðβ; NÞ ¼
X

c1;…;cN

hc1;…; cN j expð−βHÞjc1;…; cNi; ð2Þ

with ni an integer triplet specifying the lattice coordinates,
σi is the spin, and τi ¼ −1=2 is the isospin for neutrons. To
update and sum over initial and final states we implement
the pinhole trace algorithm described in Ref. [35].
We break up the exponential expð−βHÞ as a product of

transfer matrices, which are just short-time exponentials for
each lattice time step. In the auxiliary-field formalism,

the transfer matrices depend on the auxiliary fields and pion
fields [16,39]. The transfer matrix MðntÞ corresponds to
time step nt. If we use Lt total time steps, then we get a
product of the formMðLt − 1Þ � � �Mð0Þ. We use the shuttle
algorithm described in Ref. [23] to update the auxiliary
fields and pion fields.
It is also convenient to consider the partition function for

the grand canonical ensemble (GCE),

Zðβ; μGÞ ¼
X

N

eβμGNZðβ; NÞ; ð3Þ

where μG is chemical potential. The expectation of an
operator in the GCE can be evaluated as

hOiG ¼
P

NhOiNeβμGNZðβ; NÞP
Ne

βμGNZðβ; NÞ ¼
X

N

hOiNwN; ð4Þ

where wN is the normalized neutron number probability.
This distribution function wN can be obtained by calculat-
ing CE partition function Zðβ; NÞ ¼ e−βFðβ;NÞ, where the
free energy Fðβ; NÞ is the integration of the CE chemical
potential μðβ; nÞ from an N0-particle system, Fðβ; NÞ ¼
Fðβ; N0Þ þ

R
N
N0

μðβ; nÞdn. We use the Widom insertion
method [35,47,48] to calculate the CE chemical potential
μðβ; nÞ. Further details are presented in the Supplemental
Material [49].
A primary challenge for NLEFT calculations is the

Monte Carlo sign problem, caused by cancellations
between positive and negative amplitudes. In order to
mitigate this problem, we start from a simple interaction
with no significant sign oscillations and use the perturba-
tion theory to implement the difference between the simple
interaction and the high-fidelity interaction. Perturbative
calculations up to the second order correction in the energy
have been implemented in lattice quantum Monte Carlo
simulations [44]. In this work we perform the first order
perturbation to bridge the gap between simple and high-
fidelity chiral interactions. However, we greatly accelerate
the convergence of perturbation theory using high-fidelity
interactions generated using the method of wave function
matching as described in Ref. [56].
In the auxiliary-field formalism, we work with Slater

determinant wave functions and transfer matrices MðntÞ
that consist of exponentials of one-body operators that are
normal ordered so that annihilation operators are on the
right and creation operators are on the left. As a result,
the many-body amplitude equals the matrix determinant
of the single-nucleon amplitudes. At zeroth order in
perturbation theory, we simply replace each MðntÞ by
the unperturbed transfer matrix Mð0ÞðntÞ. In order to
calculate perturbation theory corrections, we introduce
additional terms into the transfer matrices,

MðntÞ ¼ Mð0ÞðntÞ þ
X

θ

tθðntÞOθ � � � ; ð5Þ
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where each Oθ is a normal-ordered one-body operator. We
can insert the operator Oθ wherever desired by taking the
derivative with respect to the corresponding parameter
tθðntÞ and setting all such parameters to zero thereafter.
In this manner, we can build higher-body operators from
products of the one-body operators Oθ and compute
corrections to any order in perturbation theory.
Unfortunately, the severe computational challenge one

faces is that taking k such derivatives requires Oð2kÞ terms.
The exponential scaling is readily seen when one calculates
the derivatives using finite differences. Each finite differ-
ence requires a forward and backward step, and this
produces 2k terms for k derivatives. The Jacobi formulas
for derivatives of matrix determinants [39] allows us to
calculate the derivatives exactly without finite differences;
however, the scaling of computational effort is still Oð2kÞ.
The RO method avoids this exponential scaling by using

one-body operators Oθ that have the form F†
α0Fα, where Fα

is the annihilation operator for nucleon orbital α and F†
α0 is

the creation operator for nucleon orbital α0. Since Fα can
only annihilate one nucleon and F†

α0 can only create one
nucleon, it is a rank-one operator. We conclude that the
amplitude has no terms that contain more than one power of
the coefficient tθðntÞ. Instead of inserting Oθ by taking the
derivative with respect to tθðntÞ, we can simply take tθðntÞ
to be very large and divide the amplitude by tθðntÞ.
Since this requires the calculation of one amplitude
rather than two amplitudes, the problem of exponential
scaling is solved.
Static structure factors are Fourier transforms of the

fluctuations of the spin and density correlation functions.
Let ρ̂ and ρ̂z be the particle density and spin density
operators, respectively. Let ρ0 be the average particle
density and ρ0z be the average spin density. Here, we
consider unpolarized neutron matter where ρ0z equals zero.
On the lattice, the vector and axial static structure factors
can be written as

SvðqÞ ¼
1

L3

X

nn0
e−iq·n½hρ̂ðnþ n0Þρ̂ðn0Þi − ðρ0Þ2�;

SaðqÞ ¼
1

L3

X

nn0
e−iq·n½hρ̂zðnþ n0Þρ̂zðn0Þi − ðρ0zÞ2�; ð6Þ

where n;n0 represents coordinate on a L3 cubic lattice. The
expectation values of these two-body density correlation
operators in Eq. (6) are calculated using the RO formalism.
Further details can be found in the Supplemental
Material [49].
Results.—We perform simulations onL3¼63;73;83 cubic

lattices with spatial lattice spacing a ¼ 1=ð150 MeVÞ ≈
1.32 fm and temporal lattice spacing at ¼ 1=ð1000 MeVÞ.
Following the strategy in Ref. [35], we use twist-averaged
boundary conditions to eliminate finite volume effects and

accelerate the convergence to the thermodynamic limit.
For twist angle θi along each spatial direction i, the possible
lattice momenta are 2πni=Lþ θi=L, with some integer ni.
The averaging over all possible twist angles θi is done by
Monte Carlo sampling.
In Fig. 1 we present NLEFT results in the GCE for the

static structure factors Sv and Sa in the long wavelength
limit, q → 0. The results are calculated at a temperature
of 20 MeV and plotted as a function of density. We show
lattice results corresponding to the high-fidelity N3LO
chiral interaction generated using wave function matching
(WFM) [56]. For comparison, we show results obtained
with RPA calculations using NRAPR [57], SGII [58],
SVmin [59], and UNEDF [60] Skyrme interactions. We
also show several virial expansion calculations, which we
now discuss.
The virial expansion is an expansion in powers of the

fugacity z ¼ expðμ=TÞ. We also make use of an approxi-
mate idealization of pure neutron matter called the unitary
limit, where the interaction range is zero and the scattering
length is infinite. The results labeled as Virial2 in Fig. 1

FIG. 1. Calculated static structure factors of Sv and Sa at the
long-wavelength limit (q → 0) with T ¼ 20 MeV. Virial2 de-
notes second order virial calculations using physical neutron data.
Virial4 [Unitary] corresponds to fourth virial calculations for the
unitary limit. Virial4 [Mix] is a hybrid of the two, with the second
order term for physical neutrons and the third and fourth order
terms for the unitary limit. The RPA calculations are carried out
with four different interactions (NRAPR, SGII, SVmin and
UNEDF). WFM(N3LO) represents the NLEFT calculations with
the wave function matching N3LO interaction.

PHYSICAL REVIEW LETTERS 132, 232502 (2024)

232502-3



corresponds to the virial expansion at second order,
using physically observed data for the interactions between
neutrons [8]. The Virial4 [Unitary] results show virial
expansions for the unitary Fermi gas results at fourth
order [9]. Higher-order virial coefficients corresponding
to physical neutrons are not currently available. The Virial4
[Mix] results corresponds to a hybrid virial calculation
where the second order terms correspond to physical
neutrons but the third and the fourth order terms are
associated with the unitary limit. The error bands on
the Virial4 results are associated with uncertainties in the
fourth order virial coefficient in the unitary limit.
The significant difference between Virial4 [Unitary] and
Virial4 [Mix] shows that even a minor change to the
interaction has a significant effect on the vector and axial
static structure factors.
In the very low-density region, the lattice results are in

agreement with both Virial2 and Virial4 [Mix]. For larger
densities, the wide difference between Virial2 and Virial4
[Mix] shows that the order-by-order convergence of the
virial expansion is slow. Further details are discussed in
the Supplemental Material. The Virial4 [Unitary] results
intersect with the lattice results near density 0.030 fm−3.
However, the deviations with the lattice results can
be as large as ∼25% at n ≈ 0.053 fm−3 and ∼5% at
n ≈ 0.015 fm−3 for Sa.
The RPA calculations provide self-consistent yet model-

dependent calculations of structure factors not only for pure
neutron matter but also for beta-equilibrium matter in a
wide range of densities and temperatures [61]. The UNEDF
interaction has quantified uncertainties of the Skyrme
interactions, and we generate an error band of RPA Sv
corresponding to these uncertainties. In the axial current
channel, we present RPA calculations for NRAPR and
SGII, interactions for which the problem of Skyrme
interaction spin instabilities do not appear for densities
lower than the saturation density of nuclear matter. In both
the vector and axial current channels, we note that the
structure factors for some of the RPA calculations are in
reasonable agreement with the lattice calculations. In the
Supplemental Material, we use the lattice results to cali-
brate the Skyrme interactions used in the RPA calculations
and make predictions for the neutrino inverse mean free
path. Several corresponding results for the chemical poten-
tial, fugacity, density, and pressure are listed in Table I.
The uncertainties shown in the graphs and the table are

stochastic errors only. We discuss systematic errors at the
end of this section.
In Fig. 2, we present the momentum-dependent structure

factor calculations at a temperature of 10 MeV in the GCE
at density ρG ¼ 0.018 fm−3. The lattice cutoff momentum
is π=a ¼ 470 MeV, and so the lattice results are most
reliable for momenta smaller than this momentum scale.
Nevertheless, the lattice results show the expected
high-momentum behavior. Both Sv and Sa should equal
the system density at large momenta, Svðq → ∞Þ ¼
Saðq → ∞Þ ¼ ρ.
At long wavelengths, Sv and Sa have opposite trends. We

also present the calculated chemical potentials of 20 CE
systems in the inset of Fig. 2, which are used to construct
this GCE system. The many-body corrections on the
neutral current neutrino-nucleon interactions in CCSNe
are usually estimated in the long wavelength limit, which is
justified since the typical momentum transfer by scattered
neutrinos is small compared to the thermal nucleon
momentum

ffiffiffiffiffiffiffiffiffiffi
6MT

p
, where M is the nucleon mass. Note

by applying exact dynamic structure factors in the calcu-
lation, the neutral current neutrino-nucleon scattering rates
have small but noticeable deviations from the ones esti-
mated in long wavelength limit [62]. Our ab initio calcu-
lations at finite momentum transfer provide benchmarks for
the calculation of dynamic structure factors of pure neutron
matter at finite temperatures.
In addition to the statistical errors reported for the lattice

results, we estimate an overall systematic uncertainty at the
5% level. The largest sources of systematic errors are due
to finite system size errors, uncertainties in the nuclear

TABLE I. Calculated grand canonical ensemble fugacity z,
density ρ [fm−3], pressure p [MeV=fm3] with different chemical
potential μ [MeV] at T ¼ 20 MeV.

μ −23.78 −16.58 −10.787 −6.450 −2.828
z 0.3045 0.4365 0.5831 0.7243 0.8682
ρ × 100 1.4274(4) 2.122(1) 2.961(1) 3.758(1) 4.560(1)
p 0.2458(1) 0.3618(1) 0.4901(1) 0.6287(1) 0.7737(2)

FIG. 2. Calculated momentum-dependent neutron matter
structure factors Sv and Sa at T ¼ 10 MeV. WFM(N3LO)
represents the NLEFT calculations with the wave function
matching N3LO interaction. The inset shows calculated chemi-
cal potentials of CE systems that are used for the construction
of GCE at the chemical potential μG ¼ −2.54 MeV and the
density ρG ¼ 0.01758ð4Þ fm−3.
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interaction, and an approximation made in neglecting the
numerically small higher-order corrections to the chemical
potential, as discussed in the Supplemental Material. The
finite system size error was obtained by analyzing the
density and pressure with different box sizes. The errors
due to uncertainties in the nuclear interaction and the
neglected higher-order corrections to the chemical potential
were performed by comparing results from calculations at
different chiral orders in the canonical ensemble.
Summary.—We have performed the first ab initio cal-

culation of structure factors for hot neutron matter using
high-fidelity chiral interactions at N3LO. The lattice results
of vector and axial structure factors are in good agreement
with virial expansions at low densities. The lattice pre-
dictions as a function of density, temperature, and momen-
tum transfer provide valuable benchmarks for calibrating
RPA and other models commonly used in supernovae
simulations. This is detailed in Supplemental Material
and further studies are planned in the future.
We have introduced a new computational approach called

the rank-one operator method to perform the calculations
presented in this work. The rank-one operator method should
have immediate applications to Monte Carlo simulations
for nearly any quantum many-body systems composed of
fermions. With new technologies such as wave function
matching available to accelerate the convergence of pertur-
bation theory, one has the possibility of avoiding
Monte Carlo sign problems for a large class of fermionic
many-body systems. The new computational paradigm
requires computing amplitudes with multiple insertions of
higher-body operators, and the rank-one operator method is
ideally suited for this purpose.
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