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Many excited states in the hadron spectrum have large branching ratios to three-hadron final
states. Understanding such particles from first principles QCD requires input from lattice QCD
with one-, two-, and three-meson interpolators as well as a reliable three-body formalism relating
finite-volume spectra at unphysical pion mass values to the scattering amplitudes at the physical
point. In this work, we provide the first-ever calculation of the resonance parameters of the ω
meson from lattice QCD, including an update of the formalism through matching to effective field
theories. The main result of this pioneering study, the pole position of the ω meson at

√
sω =

(778.0(11.2) − i 3.0(5))MeV, agrees reasonably well with experiment. In addition we provide an
estimate of the ω − ρ mass difference as 29(15)MeV.

Introduction–Quantum Chromodynamics (QCD), the
theory of the strong interactions, not only explains the
binding of quarks and gluons to protons and neutrons,
which represent most of the visible matter around us,
but also the full spectrum of the so-called hadrons. It
consists in general of baryon and meson states, most
of which are actually resonances. The ω(782) meson
plays a special role in this hadron spectrum. First, it
is the lightest hadron that features a strong, isospin
conserving decay into three particles in the final state,
ω → 3π. Second, within the vector dominance pic-
ture of the photon-nucleon interactions, it dominates the
isoscalar response [1, 2] and combined with the topo-
logical soliton picture of the nucleon, it allows one to
explain the difference in the baryonic charge and the
isoscalar electric radius [3, 4]. Third, in the one-boson-
exchange picture of the nucleon-nucleon interaction, it
generates the observed repulsion at distances below 1 fm;
see, e.g., [5, 6]. Fourth, due to strong isospin violation,
it mixes with the ρ(770) meson leading to marked effects
in the pion vector form factor, see, e.g., [7, 8]. Finally,
the ω − ρ mass splitting is phenomenologically interest-
ing, for instance for the anomalous magnetic moment of
the muon [9–11], or recently also in the context of dark
matter and so-called mirror matter [12, 13]. For all these
reasons, a first-principles calculation of this intriguing
state based on QCD is called for.

The by now standard approach for such a nonpertur-
bative calculation is represented by lattice QCD, where
space-time is discretized, and the Euclidean path inte-

gral is estimated using Markov Chain Monte Carlo meth-
ods. While lattice QCD has already addressed system-
atically the lowest resonances, the f0(500) [14–23] and
the ρ(770) [24–42], which decay into two pions in the
final state (for a review see [43]), there are only investi-
gations of repulsive three-body systems [44–50], and only
one exploratory lattice investigation of the a1(1260) ax-
ial meson decaying into three pions available so far [51].
In particular, there is no calculation of the complex pole
position of the ω meson available, because it decays pre-
dominantly to three pions in the final state. The reason
is that only in the last decade the required formalism
for such types of lattice computations has become avail-
able, see recent reviews [52, 53]. Using one of the three
state-of-the-art formalisms [54], we report here on the
first lattice calculation of the ω(782) meson, thus filling
in the gap mentioned before by providing the complex
energy, namely the mass and the width of the ω. Owing
to its three-pion decay, where two pions can form a ρ [55],
the ω cannot be considered in isolation, and we thus rely
on chiral Lagrangians with vector mesons (for a review,
see [56]) in the analysis of the ω self-energy. In particu-
lar, we use effective field theory for the extrapolation to
the physical pion mass value.

Lattice computation—The gauge configurations used in
this work were generated by the CLQCD Collaboration
with Nf = 2 + 1 flavors of dynamical quarks using the
tadpole-improved tree-level Symanzik gauge action and
tadpole-improved tree-level Wilson clover fermions [57].
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The results presented here are based on four ensem-
bles at the same lattice spacing 0.07746(18) fm, with two
pion masses Mπ ≈ 208 and 305MeV, and two volumes
each. The details of the ensembles are listed in Ta-
ble I. Specifically, the two ensembles, F32P21/F48P21
(F32P30/F48P30), share the same pion mass and lattice
spacing but differ in volume.

The lattice discretization reduces the continuum rota-
tional symmetry to the cubic symmetry group Oh in the
rest frame. Therefore, operators satisfying specific trans-
formation laws of the cubic group are constructed to in-
terpolate the ρ and the ω mesons. This study focuses on
the irreducible representation (irrep) T−

1 for both isovec-
tor ππ and isoscalar πππ in the rest frame, where the
ππ system predominantly involves the ρ in the P wave
and πππ houses the ω. The constructed operators include
types with a single meson, two mesons, and three mesons,
projected to the proper isospin and the T−

1 irrep. For an
efficient tool for operator construction, see OpTion [58].
We emphasize that it is necessary to have all three types
of operators to overlap with the dynamical channels and
the ω, and obtain reliable and precise energy spectra with
minimal pollution from the higher energy region. The de-
tailed form of the operators we used can be found in the
Supplemental Material [59]. In order to extract the finite-
volume spectra, the correlation matrices of a wide range
of operators Oi, Cij(t) = ⟨Oit)O

†
j(0)⟩T are diagonalized

by solving a generalized eigenvalue problem [63–66]; see
details in [59]. Lattice energy levels aE are extracted
from the exponential decay of the principal correlators
in Euclidean time. We note in passing that due to exact
isospin symmetry in our lattice calculation the channel
ω → π+π− is forbidden, but accounts only for about 2%
of the ω decays in total. We also note that there is mixing
with the φ meson, which is, however, too high in energy
to play a role in our analysis.

The number of quark contraction diagrams emerging
in the construction of the relevant correlators grows fac-
torially with the number of scattered particles. For in-
stance, there are nine diagrams for ππ → ππ (I = 0)
when both sink and source are two-body operators, but
202 in πππ → πππ (I = 0), with the topologies depicted
in Fig. 1 and the Supplemental Material [59]. Besides the
large number of diagrams, most of the diagrams include
disconnected quark annihilation subdiagrams, which are
difficult to calculate and induce a poor signal. There-
fore, we employ the distillation method [67] to compute
all-to-all quark perambulators, and construct Cij from
these.

The resulting ππ and πππ finite-volume spectra are
shown in Fig. 2. The ground levels appear in both ππ
and πππ channels below the first non interacting levels
indicating strong attraction in both the ρ and ω channel.
In the πππ channel, at Mπ ≈ 208MeV, the ground states
are higher than threshold, indicating a resonance with
nonzero phase space to decay; at Mπ ≈ 305MeV, the

Ensemble Volume Mπ/MeV Nconfs

F32P21 323 × 64 206.8(2.1) 459
F48P21 483 × 96 207.58(76) 221
F32P30 323 × 96 303.61(71) 777
F48P30 483 × 96 304.95(49) 201

TABLE I. CLQCD gauge configurations [57] used in this work
with a lattice spacing of a = 0.07746(18) fm. The quoted
errors are purely statistical.
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FIG. 1. A selection of diagram topologies for I = 0 for
πππ → πππ. All diagrams with the same source and sink
are permutations and recombination of these topologies. The
other topologies can be found in the Supplemental Mate-
rial [59].

ground levels are consistent between the two volumes and
lower than the πππ threshold, indicating a bound state.

Quantization conditions and resonance parameter—The
finite-volume spectra discussed above contain two- and
three-particle dynamics to be decoded through appro-
priate quantization conditions. In this work, we utilize
the finite-volume unitarity (FVU) approach [54] already
applied to a variety of three-body systems [44, 49, 51, 68–
71]. It was shown to be equivalent to the other two known
three-body formalisms in theory in Ref. [72] and numer-
ically in Ref. [70].
The dominant interaction channel of the ω system

is formalized through the πρ channel in the relative P
wave [55]. Thus, in the FVU formalism, the three-body
finite-volume spectrum is predicted in the center-of-mass
frame as a set of three-body energies E3 =

√
s for which

det{[K̃−1(s)− ΣFV (s)]EL − [B̃(s) + C̃(s)]}Γp′λ′,pλ = 0 ,

(1)

in the plane-wave adn helicity basis (PWH)
{π(p)ρλ(−p)|pL/(2π) ∈ Z3, λ ∈ {−1, 0,+1}} while
projecting each element of this equation to the T−

1 irrep
of the Oh group; see [51, 73]. The matrices B̃ (one-pion
exchange) and ΣFV (self-energy of the ρ system in
finite-volume) collect all on shell configurations of the
three pions and, therefore, single out all power-law
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FIG. 2. Finite-volume spectra for ππ(I = 1) and πππ(I =
0) for heavy and light pion mass. Red points represent the
interacting lattice energy levels aE in units of the pion mass,
the faded of which are not included in the analysis. Dashed
and dot-dashed lines depict the non interacting elastic and
inelastic levels. The orange bands are the solutions from the
main fit.

volume dependence of this system. Together with the
kinematical factor EL these matrices are entirely fixed.
Contrary to this, the matrices K̃−1 and C̃ are volume-
independent quantities (up to the neglected e−MπL

terms) containing information on the two- and three-
body dynamics, respectively. The exponential effects
from the small volume were examined by repeating the
EFT4 fit excluding the levels from F32P21. We found
that the difference from the original fit is of the order
of the statistical error, and it is quoted as a systematic
error in the Supplemental Material [59]. The two-body
force provides access to the two-body energy eigenvalues
through {E2 ∈ R|K̃−1 = ΣFV ,p(′) = 0} which is
equivalent to the usual Lüscher method [74] up to
exponentially suppressed terms. While, in general, K̃−1

and C̃ are not known, various choices relevant for the ρ
and ω systems, relying on a generic parametrization and
effective field theory are discussed below.

Generic method (GEN): the two-body force is

parametrized as [K̃−1]p′λ′,pλ = δλ′λδp′p

∑N
i=0 aiσ

i
p

for the two-body invariant mass σp := s + M2
π −

2
√
s
√
p2 +M2

π (E2 =
√
σ0) and a spectator momentum

p. We found that N = 1 is entirely sufficient to describe
the available lattice input, and this is also mathemati-
cally equivalent to the usual Breit-Wigner form. Sim-
ilarly, the three-body force C̃ is parametrized through
a general expansion in the orbital angular momentum
(JLS) basis (πρ in relative P wave) c̃11 = c0

s−M2
ω
+ c1+ ...

and then mapped to the PWH [71, 75, 76]. Here again,
the order of the expansion depends on the availability
and precision of the input. In the current case a two-
parameter fit (c0,Mω) turned out as sufficiently flexible.

Effective field theory (EFT): The GEN methodology
does not allow for chiral extrapolation to the physical
point which can be circumvented through EFTs as widely
used in the two-body sector [53, 77] but not yet in studies
of three-hadron resonances from the lattice. Still, con-
tinuum results on ω → πππ and ρ → ππ have existed
for several decades, see the review [56]. Using the results
quoted in that review we perform a matching on the level
of 2 → 2 and 3 → 3 scattering amplitudes. A somewhat
lengthy but straightforward calculation at the tree-level
yields[

K̃−1
]
p′λ′,pλ

= δλ′λδp′p

σp −M2
ρ

2g2
,

c̃11 =
6s(M2

ρ − σq + 6g2f2
π)(M

2
ρ − σp + 6g2f2

π)

64g2π3f6
π(s−M2

ω)
, (2)

where the latter is expressed in the JLS basis, pro-
jected to the PWH basis [71, 75, 76]. Throughout
this derivation, we have assumed that two- and three-
pion interactions are saturated by the s-channel reso-
nance exchange (justified by the narrow width of the
ρ and ω mesons) and set gρππ = gωρπ = g follow-
ing [56]. Thus far, the matching relations of Eq. (2)
provide access to the two- and three-body force for given
(g,Mρ,Mω). The Kawarabayashi-Suzuki-Fayyazuddin-
Riazzudin (KSFR) relation [78, 79] allows one to re-
duce this set further through Mρ =

√
2gfπ. Indeed,

this specifies already a chiral (Mπ) extrapolation through
the fπ(Mπ) from chiral perturbation theory [80]. Using
the generalized KSFR relation but allowing for a pion-
mass independent shift Mω := Mρ + δ =

√
2gfπ + δ

defines the EFT2 method referring to free parameters
(g, δ). Abandoning the KSFR relation entirely we de-
fine the EFT4 method by Mρ = MV + aM2

π , Mω =
MV + aM2

π + δ [81, 82], leaving us with four free param-
eters (g,MV , a, δ). Clearly, the proposed EFT methods
only represent a larger class of EFTs with heavy degrees
of freedom [3]. Ultimately, the defined method will be
tested against lattice QCD results.
The three-body parameters obtained through a fit to

the lattice spectra will be used to obtain the universal
parameters of the ρ and ω mesons through their pole
positions on the second Riemann sheet. The necessary
framework is provided through the infinite-volume uni-
tarity (IVU) approach [54, 83] corresponding to the above
quantization conditions. The part of the scattering am-
plitude relevant to the emergence of resonance poles is
obtained through an integral equation,

T = B̃ + C̃ +

∫
d3l

(2π)3
B̃ + C̃

2El(K̃−1 − ΣIV )
T , (3)

where we have suppressed kinematic arguments for
brevity; see Eq. (1) and [51, 71, 84]. Here, ΣIV denotes
the usual ρ self-energy integral. The corresponding inte-
gral equation can be solved through a complex contour
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deformation in the JLS basis [71, 76, 85], and pole posi-
tions extracted as shown in [51, 70, 84]. The correspond-
ing procedure for finding two-body resonance poles boils
down to finding solutions {E2 ∈ C|K̃−1 = ΣIV } on the
second Riemann sheet.

The three-body quantization condition is necessarily
formulated [53] as an infinitely dimensional determinant
equation (PWH). Throughout, this work we assume all
momenta up to pmax = (2π)/L(0, 1, 1) for computational
reasons. Related to this is also the fact that for smaller
volumes the spectator momentum cutoff leads to nega-
tive values of the two-body invariant mass. Since the
exact form of the K̃−1 is not known in this (unphysi-
cal) region we cut it off with a simple form factor re-

placing K̃−1 → (1 + e−(σ−σ0)/M
2
π )K̃−1, σ0 = 2M2

π . We
have tested other functional forms and values of σ0 and
pmax, finding no relevant effect on the extracted observ-
ables. For further details on cutoff effects in the context
of three-body systems see [44, 71, 76].

Results and discussion—The two-body finite-volume
spectra consist of three energy eigenvalues located below
the first inelastic threshold considering that two pions
need to have one unit of momentum for the T−

1 . In the
three-body spectra, we restrict ourselves to the analysis
of the ground states and the first excited state for larger-
volume ensembles as shown in Fig. 2. While qualitatively
also higher levels seem to be predicted by the approach,
their quantitative study requires a larger set of lattice
operators as well as a formalism update with more free
parameters due to the close proximity of the next excited
state of the ω meson, the ω(1420).
With respect to these data, the method

GEN yields best fits with χ2
d.o.f.(GEN, 305) =

1.3, χ2
d.o.f.(GEN, 208) = 1.6 including cross-correlations.

For more details of the fit results and the ob-
tained parameters, see [59]. Global EFT2 fits yield
χ2
d.o.f.(EFT2, 305/208) = 3.2. Provided the preci-

sion level of our data, it is noticeable that the EFT2
model is also excessively rigid. Furthermore the
corresponding pole positions at the physical point
exhibit discrepancies with the empirical data. The
EFT4 fit provides a much better description of the
finite-volume spectrum χ2

d.o.f.(EFT4, 208/305) = 2.3 for
gEFT4 = 5.96(17), δEFT4 = 38.8(6.9)MeV, MV,EFT4 =
737(12)MeV, aEFT4 = 0.96(14)GeV−1, which are, in-
deed, quite close to the phenomenological values [3, 86].
We consider EFT4 as our main result, with GEN
and EFT2 results providing a measure for systematic
uncertainties.

The resulting ω-pole positions using the IVU formal-
ism Eq. (3) with respect to the discussed methods are
shown in Fig. 3 (for ρ see [59]). In both cases and for each
pion mass, we observe 1σ agreement between all meth-
ods regarding the real part of the pole position, while the
imaginary part agrees on the level of 2σ. For the heavier

Mπ = 305MeV

Mπ = 208MeV

Mphys.
π

ω

-0.04

-0.03

-0.02

-0.01

0.00

3 4 5 6
ReE3/Mπ
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FIG. 3. Pole positions of the ω meson at varying pion mass
from the IVU approach using generic and effective field the-
ory form of the two- and three-body force. The points are the
pole position for each bootstrap sample, whereas the ellipses
represent the one- and two-sigma confidence levels. Param-
eters are fixed by fitting to the available lattice results at
Mπ = 208 and Mπ = 305MeV allowing one to extrapolate to
the physical point. Particle Data Group (PDG) results are
quoted by the green error bars for comparison [87–89].

pion mass value, the ω meson is indeed a bound state
(binding energy ∼ 80MeV). We note that the GEN re-
sults for the ω have to be taken with caution since for
each pion mass only two volumes are available for the
ω channel with one data point in the relevant energy
region, leading possibly to a residual mass and width de-
pendence. Because EFT results connect different pion
masses this is not an issue there. The EFT2 pole posi-
tions are narrowed to a small region being parametrized
only by two parameters (g, δ). The EFT4 agrees much
better with the lattice results on the level of the finite-
volume spectra as well as the corresponding GEN pole
positions. Extrapolated to the physical pion mass it
agrees astonishingly well (< 1σ) with the phenomenolog-
ical ρ- and ω- masses [87] and within 2σ also with their
widths. The numerical results in physical units read as

√
sρ = [748.9(10.0)− i 63.5(1.8)]MeV , (4)

√
sω = [778.0(11.2)− i 3.0(5)] MeV , (5)

implying for instance also an ω − ρ mass difference of
29(15)MeV, which agrees surprisingly well with the re-
sult obtained in [90]. The small deviation from the em-
pirical value could be mitigated by taking into account
the fact that in some cases too small volumes (see Ta-
ble I) could give non-negligible exponential effects and
discretization errors.

Conclusions—We have reported the first-ever lattice
QCD estimates of the ω meson mass and width. One
challenge in this calculation consists in particular in the
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precise estimation of finite-volume spectra from lattice
QCD. In resolving the complete low-lying spectrum of
states, multihadron operators prove to be essential [33].
The three-particle operators we use (see [59]) require a
significant computational effort to compute all the rele-
vant fermion contractions, a task which has only recently
become feasible due to advances in algorithms, methods,
and computational power. Another challenge concerns
the formalism development to not only map the finite-
volume results to the infinite-volume transition ampli-
tudes but to also establish a reliable connection to the
pertinent effective field theories, allowing us to perform
the so far unprecedented chiral extrapolation of three-
body resonance parameters to the physical point. The
final results show a good agreement of this theoretical
multistep procedure with the empirical values [87] re-
garding the mass of both ρ and ω mesons. The ω width
turns out slightly smaller than the experimental value,
but still agrees within 2σ uncertainties. We refer here
to an ongoing discussion on the current empirical val-
ues [91–95].

The presented study marks a new milestone in hadron
spectroscopy from lattice QCD, paving the way toward
understanding more complex systems. For closer to phys-
ical pion mass lattice setups the kinematic window to
study resonance properties shrinks due to the proximity
of the next inelastic thresholds (e.g., 5π). Thus, it may
be advantageous to use more stable and widely avail-
able results at unphysical pion mass values and extrapo-
late to the physical point by making use of robust EFT
methodology. While standard in two-body studies, such
a treatment of resonant three-body systems has not yet
been available. Future steps include the assessment of
discretization errors as well as the inclusion of larger vol-
umes to reduce the systematic uncertainties further. Ap-
plications toward the Roper resonance and Tcc are also
planned.
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[44] M. Mai and M. Döring, Finite-Volume Spectrum of π+π+

and π+π+π+ Systems, Phys. Rev. Lett. 122, 062503
(2019), arXiv:1807.04746 [hep-lat].

[45] T. D. Blanton, F. Romero-López, and S. R. Sharpe, I =
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and F. X. Lee, Three-body interactions from the finite-
volume QCD spectrum, Phys. Rev. D 104, 014501
(2021), arXiv:2101.06144 [hep-lat].

[70] M. Garofalo, M. Mai, F. Romero-López, A. Rusetsky,
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[83] M. Mai, B. Hu, M. Döring, A. Pilloni, and A. Szczepa-
niak, Three-body Unitarity with Isobars Revisited, Eur.
Phys. J. A 53, 177 (2017), arXiv:1706.06118 [nucl-th].

[84] D. Sadasivan, A. Alexandru, H. Akdag, F. Amorim,
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SUPPLEMENTAL MATERIAL

1. Table of operators

Each operator used in this work is a linear combination of quark bilinear or the product of bilinears. First, we
construct the operators in the flavor space. Let ρ+i /π

+ = d̄γi/5u, [ρ/π]
u = ūγi/5d, etc. For I = 1 ππ channel, the

following flavor structure is used: {
|ρ⟩ = −ρ+,

|ππ⟩ = 1
2

[
−π+πu + π+πd + πuπ+ − πdπ+

]
,

(S1)

where |ρ⟩ and |ππ⟩ are one-body and two-body operators, respectively.

For I = 0 πππ channel, the following structure of bilinears is designed to enforce the isoscalar projection
|ω⟩ = 1√

2
(ωu + ωd),

|ρπ⟩ = − 1√
3

[
ρ+π− + ρ−π+ + 1

2 [ρ
uπu − ρuπd − ρdπu + ρdπd]

]
,

|πππ⟩ = 1√
12

[
−π+πuπ− + π+πdπ− + πuπ+π− − πdπ+π− + π+π−πu − π+π−πd

−π−π+πu + π−π+πd − πuπ−π+ + πdπ−π+ + π−πuπ+ − π−πdπ+
]
,

(S2)

The operator set includes all one-, two-, and three-body operators to overlap with the dynamical channels in this
study.

Second, the two-body operators are further projected onto the T−
1 irrep in the momentum space to detect the P-

wave. With OpTion [58], the explicit forms of the operators are printed. For convenience, the operators are represented
as 

Oone =
∑

i ηiωµi
(0),

Otwo =
∑

i ηiρµi
(p⃗i)π(−p⃗i),

Othree =
∑

i ηiπµi
(p⃗i1)πµi

(p⃗i2)π(−p⃗i1 − p⃗i2),

(S3)

and are uniquely identified by the parameters ηi, µi and p⃗i. µi ∈ {0, 5, x, y, z} is the Cartesian gamma matrices and
corresponds to γ0, γ5, γx, γy, γz. p⃗i is the momenta for each meson. For convenience, the parameters are denoted by

ηαi1(;αi2)
µi

, (S4)

where αi one-to-one corresponds to the momentum vector. One direction notation in αi means one unit of momentum
in that direction. For example, α = yz → p⃗ = [011], α = −2x → p⃗ = [−200], etc. The space projection coefficients
are shown in Tab. S1.

channel type operator

ππ
one (+1)0z

two
(+1)05

(+1)x5 , (+1)−x
5 , (+1)y5 , (+1)−y

5 , (+1)z5, (+1)−z
5

πππ

one (+1)0z

two
(−1)−y

x , (+1)yx, (+1)−x
y , (−1)xy

(−1)xyx , (+1)xyy , (+1)x,−y
x , (+1)x,−y

y , (−1)−x,y
x , (−1)−x,y

y , (+1)−x,−y
x , (−1)−x,−y

y

three (+1)xy;−y
5 , (−1)x,−y;y

5 , (−1)−x,y;−y
5 , (+1)−x,−y;y

5 , (−1)xy;−x
5 , (+1)−x,y;x

5 , (+1)x,−y;−x
5 , (−1)−x,−y;x

5

TABLE S1. Operators used to interpolate the ππ and πππ system. Each irrep contains both one-meson type, two-meson, and

possible three-meson type operators. The symbols η
αi1(;αi2)
µi are defined in the context. The overall constants are ignored.

Non-local operators with covariant derivatives are tested. The resulting spectra do not lead to noticeable change
and as a result, this kind of operators are disposed out of the operator set.
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2. Topologies of the contraction diagrams

After projecting to isospin I = 0, only certain topologies remain. The topologies of πππ → πππ are illustrated in
the main text. The schematics of other diagrams including the three-pion operators, i.e., πππ → ρπ and πππ → ω,
are shown in Fig. S1.

π

π

π

ρ

π

π

π

π

ρ

π

π

π

π

ρ

π

π

π

π

ρ

π

π

π

π

ω

π

π

π

ω

FIG. S1. Topologies of the diagrams for πππ → ρπ and πππ → ω.

Topologies in the two-pion and one-pion sectors are shown in Fig S2. The type of topologies is the same as those
for I = 0 ππ scattering, with one of the π replaced by the ρ meson and the target resonance σ replaced by the ω.

ρ

π

ρ

π

ρ

π

ρ

π

ρ

π

ρ

π

ρ

π

ρ

π

ρ

π

ω

ρ

π

ω ω ω

FIG. S2. Topologies of the diagrams for ρπ → ρπ, ρπ → ω, and ω → ω.

3. Spectra

In this section, we present the details of extracting finite-volume energy levels from the correlation matrices Cij(t).
To determine the lowest levels, we solve the GEVP for each ensemble,

C(t)vn(t, t0) = λn(t, t0)C(t0)vn(t, t0) , (S5)

where λn(t, t0) are the eigenvalues corresponding to the eigenvectors vn(t, t0). For the ππ channel, we use 3 × 3
matrices and for the πππ channel, we use 4× 4 matrices using the operators in Table S1. The choice of the reference
time t0 has a negligible impact on the resulting spectra.

The effective mass of the eigenvalues in the ππ and πππ channel are shown in Figs. S3 and S3, respectively. The
plots exhibit plateaus at large t. The thermal pollution in the ππ channel is eliminated by shifting the correlation
matrices before solving GEVP. The thermal pollution in the πππ channel is not evident with the current precision,
and is, thus, ignored in the analysis.

The energy levels of the nth excited states are extracted by doing a two-state fit of λn(t, t0):

λn(t, t0) = (1−An) e
−En(t−t0) +An e

−E′
n(t−t0), (S6)

where En is the nth energy level.
We inspected the dependence of the levels on the fitting range and chose the starting point tmin such that the fit

yields a reasonable χ2
dof and remains stable against changes in the fitting range. An example of this stability analysis

for the ground state in the πππ channel of ensemble F32P21 is shown in Fig. S5. Statistical uncertainties are estimated
from 2000 Bootstrap samples.

4. Fit results

Details of the fit results for the GEN(305), GEN(208), EFT2(208/305) and EFT4(208/305) methods of parametriz-
ing two- and three-body force. All values are estimated for the pmax = (2π)/L(0, 1, 1) spectator momentum cutoff and
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FIG. S3. Effective masses of the GEVP eigenvalues in the I = 1ππ channel.

left-hand cutoff form-factor K̃−1 → (1 + e−(σ−σ0)/M
2
π )K̃−1. Statistical uncertainties are estimated from 2000 Boot-

strap samples. For the EFT4 fit, we also estimated the systematic uncertainty from the exponential finite-volume
effect by excluding energy levels from the F32P21 ensemble, which has the smallest MπL. The difference in the
fit parameters with and without this ensemble is reported as the second error. This uncertainty remains within or
slightly above the statistical error, suggesting that the finite-volume effect does not significantly impact our fit. The
distribution and covariances of the parameters of GEN and EFT fits are shown in the corner plots Fig. S6 and Fig. S7,
respectively.

Mπ/MeV K̃−1 c11 χ2
dof Parameters

305 a0 + a1σ
c0

s−M2
ω

1.25 a0 = −9556(597)MeV2, a1 = 0.01393(94), c0 = 5.7(4.2)× 106 MeV2, Mω = 841.5(7.3)MeV

208 a0 + a1σ
c0

s−M2
ω

1.57 a0 = −8068(718)MeV2, a1 = 0.0130(14), c0 = 2(17)× 106 MeV2, Mω = 784(13)MeV

305/208

σ−M2
ρ

2g2
cEFT
11 3.16 g = 5.432(29), δ = 36.2(6.7) MeV

σ−M2
ρ (MV ,a)

2g2
cEFT
11 2.29 g = 5.960(167)[5], δ = 38.8(6.9)[7.3] MeV, MV = 737(12)[2] MeV, a = 0.00096(14)[4] MeV−1

TABLE S2. Results for simultaneous 2/3-body fit.

The resulting ρ pole positions using the procedure described in Sec Quantization conditions and resonance parameter
of the main text are shown in Fig. S8.
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FIG. S4. Effective masses of the GEVP eigenvalues in the I = 0πππ channel.
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of the two-state fit S6, while the green squares represent the results from a one-state fit given by λn(t, t0) = e−En(t−t0). The
chosen value of tmin in the two-state fit is represented as a filled point.
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