001034900 001__ 1034900
001034900 005__ 20250203103409.0
001034900 037__ $$aFZJ-2025-00023
001034900 041__ $$aEnglish
001034900 1001_ $$0P:(DE-Juel1)194933$$aAzua Humara, Ana Daniela$$b0$$eFirst author$$ufzj
001034900 1112_ $$aIET-1 PhD Autumn Seminar$$cDüren$$d2024-10-28 - 2024-10-30$$gSci-Hike$$wGermany
001034900 245__ $$aElectrocatalytic Ammonia Synthesis At Low Temperatures And Low Pressures In Aqueous Media$$f2024-10-30 -
001034900 260__ $$c2024
001034900 3367_ $$033$$2EndNote$$aConference Paper
001034900 3367_ $$2DataCite$$aOther
001034900 3367_ $$2BibTeX$$aINPROCEEDINGS
001034900 3367_ $$2ORCID$$aLECTURE_SPEECH
001034900 3367_ $$0PUB:(DE-HGF)31$$2PUB:(DE-HGF)$$aTalk (non-conference)$$btalk$$mtalk$$s1736140875_22936$$xOther
001034900 3367_ $$2DINI$$aOther
001034900 502__ $$cRWTH Aachen
001034900 520__ $$aAmmonia is one of the most produced chemical substances globally and a key component in fertilizers. Its demand is expected to rise significantly in the coming decades due to population growth. However, the thermochemical Haber-Bosch process, which is currently used to produce ammonia, is highly energy-intensive and generates significant CO2 emissions. The international target is to reduce the ammonia industry’s emissions to just 367 MtCO2 per year by 2050. [1] Achieving this target requires decarbonizing ammonia industry by implementing sustainable technologies. While coupling the Harber-Bosch process with green hydrogen can help reduce carbon emissions, projections indicate that additional alternative technologies of ammonia production will be necessary to meet the 2050 carbon target. [1] In this context, electrochemical nitrogen reduction under ambient conditions represents a promising approach to complement the future technologies portfolio for green ammonia production.Given the challenging and complex nature of electrochemical nitrogen reduction, this PhD project adopts a systematic research approach. The approach involves separating the two key reaction steps—nitrogen activation and nitrogen protonation—to study each in detail. This will provide a deeper understanding that will guide the design of an effective catalyst for ammonia production. The first step, nitrogen activation, involves nitrogen adsorption and the breaking of the highly stable nitrogen triple bond. Because 941 kJ/mol of energy is required to dissociate N₂ bonds, nitrogen activation is more difficult than the nitrogen protonation step. Nitrogen protonation, the second step, refers to the addition of protons (H⁺) to nitrogen atoms to form ammonia (NH₃). Protonation is closely related to the selectivity of the reaction, as by-products like hydrazine can also form. Additionally, protons may react to form hydrogen gas instead of ammonia, which can further affect the reaction’s efficiency.This progress report presents the results of the nitrogen protonation investigation. The electrochemical nitrate reduction reaction was selected as a model reaction because it has lower energy requirements and shares key similarities with nitrogen reduction reaction under ambient conditions. These similarities include the competition with HER, the formation of nitrogen-containing byproducts, and the multistep proton-coupled electron transfers
001034900 536__ $$0G:(DE-HGF)POF4-1231$$a1231 - Electrochemistry for Hydrogen (POF4-123)$$cPOF4-123$$fPOF IV$$x0
001034900 536__ $$0G:(BMBF)03SF0589B$$aBMBF 03SF0589B - Verbundvorhaben iNEW: Inkubator Nachhaltige Elektrochemische Wertschöpfungsketten (iNEW) im Rahmen des Gesamtvorhabens Accelerator Nachhaltige Bereitstellung Elektrochemisch Erzeugter Kraft- und Wertstoffe mittels Power-to-X (ANABEL) (03SF0589B)$$c03SF0589B$$x1
001034900 536__ $$0G:(DE-Juel1)HITEC-20170406$$aHITEC - Helmholtz Interdisciplinary Doctoral Training in Energy and Climate Research (HITEC) (HITEC-20170406)$$cHITEC-20170406$$x2
001034900 65027 $$0V:(DE-MLZ)SciArea-250$$2V:(DE-HGF)$$aOthers$$x0
001034900 65027 $$0V:(DE-MLZ)SciArea-110$$2V:(DE-HGF)$$aChemistry$$x1
001034900 65027 $$0V:(DE-MLZ)SciArea-240$$2V:(DE-HGF)$$aCrystallography$$x2
001034900 65017 $$0V:(DE-MLZ)GC-2004-2016$$2V:(DE-HGF)$$aBasic research$$x0
001034900 65017 $$0V:(DE-MLZ)GC-1603-2016$$2V:(DE-HGF)$$aChemical Reactions and Advanced Materials$$x1
001034900 7001_ $$0P:(DE-Juel1)192123$$aLuna Barron, Ana Laura$$b1$$eCorresponding author
001034900 909CO $$ooai:juser.fz-juelich.de:1034900$$pVDB
001034900 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)194933$$aForschungszentrum Jülich$$b0$$kFZJ
001034900 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)194933$$aRWTH Aachen$$b0$$kRWTH
001034900 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)192123$$aForschungszentrum Jülich$$b1$$kFZJ
001034900 9131_ $$0G:(DE-HGF)POF4-123$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1231$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vChemische Energieträger$$x0
001034900 9141_ $$y2024
001034900 920__ $$lyes
001034900 9201_ $$0I:(DE-Juel1)IET-1-20110218$$kIET-1$$lGrundlagen der Elektrochemie$$x0
001034900 980__ $$atalk
001034900 980__ $$aVDB
001034900 980__ $$aI:(DE-Juel1)IET-1-20110218
001034900 980__ $$aUNRESTRICTED