001034906 001__ 1034906
001034906 005__ 20250203103410.0
001034906 037__ $$aFZJ-2025-00027
001034906 041__ $$aEnglish
001034906 1001_ $$0P:(DE-Juel1)194933$$aAzua Humara, Ana Daniela$$b0$$eFirst author$$ufzj
001034906 1112_ $$a37th Topical Meeting of the International Society of Electrochemistry$$cStresa$$d2024-06-09 - 2024-06-12$$gISE$$wItaly
001034906 245__ $$aUnderstanding Nitrate Electrochemical Reduction to Ammonia by Identifying Changes in pH
001034906 260__ $$c2024
001034906 3367_ $$033$$2EndNote$$aConference Paper
001034906 3367_ $$2BibTeX$$aINPROCEEDINGS
001034906 3367_ $$2DRIVER$$aconferenceObject
001034906 3367_ $$2ORCID$$aCONFERENCE_POSTER
001034906 3367_ $$2DataCite$$aOutput Types/Conference Poster
001034906 3367_ $$0PUB:(DE-HGF)24$$2PUB:(DE-HGF)$$aPoster$$bposter$$mposter$$s1736140938_28300$$xAfter Call
001034906 502__ $$cRWTH Aachen
001034906 520__ $$aElectrochemical nitrate reduction into ammonia is an attractive technology that promotes nitrates removal from wastewater while delivering ammonia as a profitable product. The high concentration of nitrates in the wastewater of the agricultural and various industrial sectors is a serious pollution problem with serious consequences for the environment and public health.[1] On the other hand, ammonia is one of the most demanded chemical substances worldwide since it is a raw material for different products, mainly fertilizers, plastics, and fuels [2]. Therefore, understanding the electrochemical conversion of nitrates to ammonia in aqueous media and under ambient conditions is a key element both to address water pollution and to ensure ammonia supply. Electrochemical nitrates reduction to ammonia in aqueous media under ambient conditions has been reported, using noble metal-based electrodes (e.g., Ru, Rh, Pt). [2] It has been shown that nitrates reduction is a complex process due to its polyatomic nature, forming several intermediate compounds before its complete reduction into ammonia. The ammonia selectivity depends on the electrocatalyst, the applied potential, and the electrolyte media. [3] Jaramillo’s group studied the effect of the initial pH electrolyte on the ammonia Faradaic efficiency, concluding ammonia formation is favored at low pH (<1).[1] Clearly, pH plays an essential role in nitrates reduction. However, there is limited knowledge of pH changes through the reaction, since only initial pH is reported, and how and why such changes impact the ammonia selectivity. In this work, the changes in pH during the electrochemical reduction of nitrates to ammonia are evaluated using Ti and Cu-foils. We investigate four different electrolytes ranging from pH 1 to pH 10, tracking the changes in pH over the course of a 30 min experiment. Our results show that when the initial pH is equal to or above pH 3 the media undergoes alkalinization, reaching pH values close to 12. On the other hand, in acidic conditions the pH only increases slightly. In addition, the highest faradaic efficiency is obtained at more alkaline initial conditions. The intermediate products are also detected and correlated to the pH increase.
001034906 536__ $$0G:(DE-HGF)POF4-1231$$a1231 - Electrochemistry for Hydrogen (POF4-123)$$cPOF4-123$$fPOF IV$$x0
001034906 536__ $$0G:(DE-Juel1)HITEC-20170406$$aHITEC - Helmholtz Interdisciplinary Doctoral Training in Energy and Climate Research (HITEC) (HITEC-20170406)$$cHITEC-20170406$$x1
001034906 536__ $$0G:(BMBF)03SF0589B$$aBMBF 03SF0589B - Verbundvorhaben iNEW: Inkubator Nachhaltige Elektrochemische Wertschöpfungsketten (iNEW) im Rahmen des Gesamtvorhabens Accelerator Nachhaltige Bereitstellung Elektrochemisch Erzeugter Kraft- und Wertstoffe mittels Power-to-X (ANABEL) (03SF0589B)$$c03SF0589B$$x2
001034906 65027 $$0V:(DE-MLZ)SciArea-110$$2V:(DE-HGF)$$aChemistry$$x0
001034906 65027 $$0V:(DE-MLZ)SciArea-250$$2V:(DE-HGF)$$aOthers$$x1
001034906 65027 $$0V:(DE-MLZ)SciArea-180$$2V:(DE-HGF)$$aMaterials Science$$x2
001034906 65017 $$0V:(DE-MLZ)GC-1603-2016$$2V:(DE-HGF)$$aChemical Reactions and Advanced Materials$$x0
001034906 65017 $$0V:(DE-MLZ)GC-2004-2016$$2V:(DE-HGF)$$aBasic research$$x1
001034906 7001_ $$0P:(DE-Juel1)192123$$aLuna Barron, Ana Laura$$b1$$eCorresponding author
001034906 7001_ $$0P:(DE-Juel1)175122$$aMechler, Anna$$b2$$ufzj
001034906 7001_ $$0P:(DE-Juel1)156123$$aEichel, Rüdiger-A.$$b3$$eLast author$$ufzj
001034906 909CO $$ooai:juser.fz-juelich.de:1034906$$pVDB
001034906 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)194933$$aForschungszentrum Jülich$$b0$$kFZJ
001034906 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)194933$$aRWTH Aachen$$b0$$kRWTH
001034906 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)192123$$aForschungszentrum Jülich$$b1$$kFZJ
001034906 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)175122$$aForschungszentrum Jülich$$b2$$kFZJ
001034906 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)156123$$aForschungszentrum Jülich$$b3$$kFZJ
001034906 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)156123$$aRWTH Aachen$$b3$$kRWTH
001034906 9131_ $$0G:(DE-HGF)POF4-123$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1231$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vChemische Energieträger$$x0
001034906 9141_ $$y2024
001034906 920__ $$lyes
001034906 9201_ $$0I:(DE-Juel1)IET-1-20110218$$kIET-1$$lGrundlagen der Elektrochemie$$x0
001034906 980__ $$aposter
001034906 980__ $$aVDB
001034906 980__ $$aI:(DE-Juel1)IET-1-20110218
001034906 980__ $$aUNRESTRICTED