001     1034906
005     20250203103410.0
037 _ _ |a FZJ-2025-00027
041 _ _ |a English
100 1 _ |a Azua Humara, Ana Daniela
|0 P:(DE-Juel1)194933
|b 0
|e First author
|u fzj
111 2 _ |a 37th Topical Meeting of the International Society of Electrochemistry
|g ISE
|c Stresa
|d 2024-06-09 - 2024-06-12
|w Italy
245 _ _ |a Understanding Nitrate Electrochemical Reduction to Ammonia by Identifying Changes in pH
260 _ _ |c 2024
336 7 _ |a Conference Paper
|0 33
|2 EndNote
336 7 _ |a INPROCEEDINGS
|2 BibTeX
336 7 _ |a conferenceObject
|2 DRIVER
336 7 _ |a CONFERENCE_POSTER
|2 ORCID
336 7 _ |a Output Types/Conference Poster
|2 DataCite
336 7 _ |a Poster
|b poster
|m poster
|0 PUB:(DE-HGF)24
|s 1736140938_28300
|2 PUB:(DE-HGF)
|x After Call
502 _ _ |c RWTH Aachen
520 _ _ |a Electrochemical nitrate reduction into ammonia is an attractive technology that promotes nitrates removal from wastewater while delivering ammonia as a profitable product. The high concentration of nitrates in the wastewater of the agricultural and various industrial sectors is a serious pollution problem with serious consequences for the environment and public health.[1] On the other hand, ammonia is one of the most demanded chemical substances worldwide since it is a raw material for different products, mainly fertilizers, plastics, and fuels [2]. Therefore, understanding the electrochemical conversion of nitrates to ammonia in aqueous media and under ambient conditions is a key element both to address water pollution and to ensure ammonia supply. Electrochemical nitrates reduction to ammonia in aqueous media under ambient conditions has been reported, using noble metal-based electrodes (e.g., Ru, Rh, Pt). [2] It has been shown that nitrates reduction is a complex process due to its polyatomic nature, forming several intermediate compounds before its complete reduction into ammonia. The ammonia selectivity depends on the electrocatalyst, the applied potential, and the electrolyte media. [3] Jaramillo’s group studied the effect of the initial pH electrolyte on the ammonia Faradaic efficiency, concluding ammonia formation is favored at low pH (<1).[1] Clearly, pH plays an essential role in nitrates reduction. However, there is limited knowledge of pH changes through the reaction, since only initial pH is reported, and how and why such changes impact the ammonia selectivity. In this work, the changes in pH during the electrochemical reduction of nitrates to ammonia are evaluated using Ti and Cu-foils. We investigate four different electrolytes ranging from pH 1 to pH 10, tracking the changes in pH over the course of a 30 min experiment. Our results show that when the initial pH is equal to or above pH 3 the media undergoes alkalinization, reaching pH values close to 12. On the other hand, in acidic conditions the pH only increases slightly. In addition, the highest faradaic efficiency is obtained at more alkaline initial conditions. The intermediate products are also detected and correlated to the pH increase.
536 _ _ |a 1231 - Electrochemistry for Hydrogen (POF4-123)
|0 G:(DE-HGF)POF4-1231
|c POF4-123
|f POF IV
|x 0
536 _ _ |a HITEC - Helmholtz Interdisciplinary Doctoral Training in Energy and Climate Research (HITEC) (HITEC-20170406)
|0 G:(DE-Juel1)HITEC-20170406
|c HITEC-20170406
|x 1
536 _ _ |a BMBF 03SF0589B - Verbundvorhaben iNEW: Inkubator Nachhaltige Elektrochemische Wertschöpfungsketten (iNEW) im Rahmen des Gesamtvorhabens Accelerator Nachhaltige Bereitstellung Elektrochemisch Erzeugter Kraft- und Wertstoffe mittels Power-to-X (ANABEL) (03SF0589B)
|0 G:(BMBF)03SF0589B
|c 03SF0589B
|x 2
650 2 7 |a Chemistry
|0 V:(DE-MLZ)SciArea-110
|2 V:(DE-HGF)
|x 0
650 2 7 |a Others
|0 V:(DE-MLZ)SciArea-250
|2 V:(DE-HGF)
|x 1
650 2 7 |a Materials Science
|0 V:(DE-MLZ)SciArea-180
|2 V:(DE-HGF)
|x 2
650 1 7 |a Chemical Reactions and Advanced Materials
|0 V:(DE-MLZ)GC-1603-2016
|2 V:(DE-HGF)
|x 0
650 1 7 |a Basic research
|0 V:(DE-MLZ)GC-2004-2016
|2 V:(DE-HGF)
|x 1
700 1 _ |a Luna Barron, Ana Laura
|0 P:(DE-Juel1)192123
|b 1
|e Corresponding author
700 1 _ |a Mechler, Anna
|0 P:(DE-Juel1)175122
|b 2
|u fzj
700 1 _ |a Eichel, Rüdiger-A.
|0 P:(DE-Juel1)156123
|b 3
|e Last author
|u fzj
909 C O |o oai:juser.fz-juelich.de:1034906
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)194933
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 0
|6 P:(DE-Juel1)194933
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)192123
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)175122
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)156123
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 3
|6 P:(DE-Juel1)156123
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Materialien und Technologien für die Energiewende (MTET)
|1 G:(DE-HGF)POF4-120
|0 G:(DE-HGF)POF4-123
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Chemische Energieträger
|9 G:(DE-HGF)POF4-1231
|x 0
914 1 _ |y 2024
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IET-1-20110218
|k IET-1
|l Grundlagen der Elektrochemie
|x 0
980 _ _ |a poster
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IET-1-20110218
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21