001034907 001__ 1034907
001034907 005__ 20250203103501.0
001034907 037__ $$aFZJ-2025-00028
001034907 041__ $$aEnglish
001034907 1001_ $$0P:(DE-Juel1)194933$$aAzua Humara, Ana Daniela$$b0$$eFirst author$$ufzj
001034907 1112_ $$aGesellschaft Deutscher Chemiker - Electrochemistry 2024$$cBraunschweig$$d2024-09-16 - 2024-09-19$$gGDCh - Electrochemistry 202$$wGermany
001034907 245__ $$aUnderstanding Nitrate Electrochemical Reduction to Ammonia by Identifying Changes in pH
001034907 260__ $$c2024
001034907 3367_ $$033$$2EndNote$$aConference Paper
001034907 3367_ $$2BibTeX$$aINPROCEEDINGS
001034907 3367_ $$2DRIVER$$aconferenceObject
001034907 3367_ $$2ORCID$$aCONFERENCE_POSTER
001034907 3367_ $$2DataCite$$aOutput Types/Conference Poster
001034907 3367_ $$0PUB:(DE-HGF)24$$2PUB:(DE-HGF)$$aPoster$$bposter$$mposter$$s1736140952_22936$$xAfter Call
001034907 502__ $$cRWTH Aachen
001034907 520__ $$aElectrochemical nitrate reduction into ammonia is an attractive technology that promotes nitrates removal from wastewater while delivering ammonia as a profitable product.[1] Electrochemical nitrates S reduction to ammonia in aqueous media under ambient conditions has been reported, using noble metal-based electrodes (e.g., Ru, Rh, Pt). [2] It has been shown that the nitrates reduction is a complex process due to its polyatomic nature, forming several intermediate compounds before its complete reduction into ammonia. The ammonia selectivity depends on the electrocatalyst, the applied potential, and the electrolyte media. [3] Jaramillo’s group studied the effect of the initial pH electrolyte on the ammonia Faradaic efficiency, concluding ammonia formation is favored at low pH (<1).[1] Clearly, pH plays an essential role in nitrates reduction. However, there is limited knowledge of pH changes through the reaction, since only initial pH is reported, and how and why such changes impact the ammonia selectivity. In this work, the changes in pH during the electrochemical reduction of nitrates to ammonia are evaluated using Ti and Cu-foils. We investigate four different electrolytes ranging from pH 1 to pH 10, tracking the changes in pH over the course of a 30 min experiment. Our results show that when the initial pH is equal to or above pH 3 the media undergoes alkalinization, reaching pH values close to 12. On the other hand, in acidic conditions the pH only increases slightly. In addition, the highest faradaic efficiency is obtained at more alkaline initial conditions. The intermediate products are also detected and correlated to the pH increase.
001034907 536__ $$0G:(DE-HGF)POF4-1231$$a1231 - Electrochemistry for Hydrogen (POF4-123)$$cPOF4-123$$fPOF IV$$x0
001034907 536__ $$0G:(DE-Juel1)HITEC-20170406$$aHITEC - Helmholtz Interdisciplinary Doctoral Training in Energy and Climate Research (HITEC) (HITEC-20170406)$$cHITEC-20170406$$x1
001034907 536__ $$0G:(BMBF)03SF0589B$$aBMBF 03SF0589B - Verbundvorhaben iNEW: Inkubator Nachhaltige Elektrochemische Wertschöpfungsketten (iNEW) im Rahmen des Gesamtvorhabens Accelerator Nachhaltige Bereitstellung Elektrochemisch Erzeugter Kraft- und Wertstoffe mittels Power-to-X (ANABEL) (03SF0589B)$$c03SF0589B$$x2
001034907 65027 $$0V:(DE-MLZ)SciArea-110$$2V:(DE-HGF)$$aChemistry$$x0
001034907 65027 $$0V:(DE-MLZ)SciArea-180$$2V:(DE-HGF)$$aMaterials Science$$x1
001034907 65027 $$0V:(DE-MLZ)SciArea-250$$2V:(DE-HGF)$$aOthers$$x2
001034907 65017 $$0V:(DE-MLZ)GC-2004-2016$$2V:(DE-HGF)$$aBasic research$$x0
001034907 65017 $$0V:(DE-MLZ)GC-1603-2016$$2V:(DE-HGF)$$aChemical Reactions and Advanced Materials$$x1
001034907 7001_ $$0P:(DE-Juel1)192123$$aLuna Barron, Ana Laura$$b1$$eCorresponding author
001034907 7001_ $$0P:(DE-Juel1)175122$$aMechler, Anna$$b2
001034907 7001_ $$0P:(DE-Juel1)156123$$aEichel, Rüdiger-A.$$b3$$eLast author$$ufzj
001034907 909CO $$ooai:juser.fz-juelich.de:1034907$$pVDB
001034907 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)194933$$aForschungszentrum Jülich$$b0$$kFZJ
001034907 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)194933$$aRWTH Aachen$$b0$$kRWTH
001034907 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)192123$$aForschungszentrum Jülich$$b1$$kFZJ
001034907 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)175122$$aForschungszentrum Jülich$$b2$$kFZJ
001034907 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)156123$$aForschungszentrum Jülich$$b3$$kFZJ
001034907 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)156123$$aRWTH Aachen$$b3$$kRWTH
001034907 9131_ $$0G:(DE-HGF)POF4-123$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1231$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vChemische Energieträger$$x0
001034907 9141_ $$y2024
001034907 920__ $$lyes
001034907 9201_ $$0I:(DE-Juel1)IET-1-20110218$$kIET-1$$lGrundlagen der Elektrochemie$$x0
001034907 980__ $$aposter
001034907 980__ $$aVDB
001034907 980__ $$aI:(DE-Juel1)IET-1-20110218
001034907 980__ $$aUNRESTRICTED