001034929 001__ 1034929 001034929 005__ 20250103211012.0 001034929 037__ $$aFZJ-2025-00042 001034929 041__ $$aEnglish 001034929 1001_ $$0P:(DE-Juel1)130991$$aSu, Yixi$$b0$$ufzj 001034929 1112_ $$aInvited Seminar at IQMT, KIT$$cIQMT, KIT, Karlsruhe$$d2022-10-26 - 2022-10-26$$wGermany 001034929 245__ $$aNeutron scattering on magnetic topological materials 001034929 260__ $$c2022 001034929 3367_ $$033$$2EndNote$$aConference Paper 001034929 3367_ $$2DataCite$$aOther 001034929 3367_ $$2BibTeX$$aINPROCEEDINGS 001034929 3367_ $$2ORCID$$aLECTURE_SPEECH 001034929 3367_ $$0PUB:(DE-HGF)31$$2PUB:(DE-HGF)$$aTalk (non-conference)$$btalk$$mtalk$$s1735903226_30025$$xInvited 001034929 3367_ $$2DINI$$aOther 001034929 520__ $$aMagnetic topological materials, such as magnetic Dirac and Weyl semimetals, and intrinsic magnetic topological insulators, in which topologically non-trivial band structures, magnetism and electronic correlation effects can be intertwined, have recently emerged as an exciting platform to explore exotic states and novel functionalities. As a unique microscopic probe for magnetism, neutron scattering is ideally suited for the investigations of magnetic correlations over a wide range of length and time scales in these emergent quantum materials. In this talk, I will present our recent neutron scattering studies of magnetic topological materials, with the main aim to demonstrate the fascinating interplay between topology, magnetism and electronic correlation. In the Dirac semimetal EuMnBi$_2$, the evidence for the possible impact of magnetism on Dirac fermions is obtained via a detailed neutron diffraction study of the spin-flop transition [1]. In the two-dimensional van der Waals honeycomb ferromagnets CrSiTe$_3$ and CrGeTe$_3$, the exotic topological magnon insulators, the bosonic analogue of topological insulators, have been experimentally realized based on our inelastic neutron scattering study and theoretical analysis of spin-wave excitations [2]. Furthermore, in the magnetic Weyl semimetal Mn$_3$Sn, an unusual magnetic phase transition that is driven by emergent many-body effects can be revealed via our combined polarised neutron scattering study and band-structure calculations [3].[1] F. Zhu, et al., Phys. Rev. Research 2, 043100 (2020).[2] F. Zhu, et al., Sci. Adv. 7, eabi7532 (2021).[3] X. Wang, et al., (submitted). 001034929 536__ $$0G:(DE-HGF)POF4-632$$a632 - Materials – Quantum, Complex and Functional Materials (POF4-632)$$cPOF4-632$$fPOF IV$$x0 001034929 536__ $$0G:(DE-HGF)POF4-6G4$$a6G4 - Jülich Centre for Neutron Research (JCNS) (FZJ) (POF4-6G4)$$cPOF4-6G4$$fPOF IV$$x1 001034929 65027 $$0V:(DE-MLZ)SciArea-170$$2V:(DE-HGF)$$aMagnetism$$x0 001034929 65027 $$0V:(DE-MLZ)SciArea-120$$2V:(DE-HGF)$$aCondensed Matter Physics$$x1 001034929 65017 $$0V:(DE-MLZ)GC-1604-2016$$2V:(DE-HGF)$$aMagnetic Materials$$x0 001034929 65017 $$0V:(DE-MLZ)GC-120-2016$$2V:(DE-HGF)$$aInformation and Communication$$x1 001034929 693__ $$0EXP:(DE-MLZ)DNS-20140101$$1EXP:(DE-MLZ)FRMII-20140101$$5EXP:(DE-MLZ)DNS-20140101$$6EXP:(DE-MLZ)NL6S-20140101$$aForschungs-Neutronenquelle Heinz Maier-Leibnitz $$eDNS: Diffuse scattering neutron time of flight spectrometer$$fNL6S$$x0 001034929 693__ $$0EXP:(DE-MLZ)HEIDI-20140101$$1EXP:(DE-MLZ)FRMII-20140101$$5EXP:(DE-MLZ)HEIDI-20140101$$6EXP:(DE-MLZ)SR9b-20140101$$aForschungs-Neutronenquelle Heinz Maier-Leibnitz $$eHEiDi: Single crystal diffractometer on hot source$$fSR9b$$x1 001034929 693__ $$0EXP:(DE-MLZ)PUMA-20140101$$1EXP:(DE-MLZ)FRMII-20140101$$5EXP:(DE-MLZ)PUMA-20140101$$6EXP:(DE-MLZ)SR7-20140101$$aForschungs-Neutronenquelle Heinz Maier-Leibnitz $$ePUMA: Thermal three axes spectrometer$$fSR7$$x2 001034929 693__ $$0EXP:(DE-Juel1)ILL-IN12-20150421$$5EXP:(DE-Juel1)ILL-IN12-20150421$$eILL-IN12: Cold neutron 3-axis spectrometer$$x3 001034929 693__ $$0EXP:(DE-MLZ)External-20140101$$5EXP:(DE-MLZ)External-20140101$$eMeasurement at external facility$$x4 001034929 909CO $$ooai:juser.fz-juelich.de:1034929$$pVDB:MLZ$$pVDB 001034929 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130991$$aForschungszentrum Jülich$$b0$$kFZJ 001034929 9131_ $$0G:(DE-HGF)POF4-632$$1G:(DE-HGF)POF4-630$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lVon Materie zu Materialien und Leben$$vMaterials – Quantum, Complex and Functional Materials$$x0 001034929 9131_ $$0G:(DE-HGF)POF4-6G4$$1G:(DE-HGF)POF4-6G0$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lGroßgeräte: Materie$$vJülich Centre for Neutron Research (JCNS) (FZJ)$$x1 001034929 920__ $$lyes 001034929 9201_ $$0I:(DE-Juel1)JCNS-FRM-II-20110218$$kJCNS-FRM-II$$lJCNS-FRM-II$$x0 001034929 9201_ $$0I:(DE-588b)4597118-3$$kMLZ$$lHeinz Maier-Leibnitz Zentrum$$x1 001034929 980__ $$atalk 001034929 980__ $$aVDB 001034929 980__ $$aI:(DE-Juel1)JCNS-FRM-II-20110218 001034929 980__ $$aI:(DE-588b)4597118-3 001034929 980__ $$aUNRESTRICTED