001     1034963
005     20250203103113.0
037 _ _ |a FZJ-2025-00071
041 _ _ |a English
100 1 _ |a Quercia, Alessio
|0 P:(DE-Juel1)188471
|b 0
|e Corresponding author
|u fzj
111 2 _ |a Helmholtz AI Conference
|c Düsseldorf
|d 2024-06-12 - 2024-06-14
|w Germany
245 _ _ |a Multi-Source Auxiliary Tasks supported Monocular Depth Estimation
260 _ _ |c 2024
336 7 _ |a Conference Paper
|0 33
|2 EndNote
336 7 _ |a Other
|2 DataCite
336 7 _ |a INPROCEEDINGS
|2 BibTeX
336 7 _ |a conferenceObject
|2 DRIVER
336 7 _ |a LECTURE_SPEECH
|2 ORCID
336 7 _ |a Conference Presentation
|b conf
|m conf
|0 PUB:(DE-HGF)6
|s 1736773569_16364
|2 PUB:(DE-HGF)
|x After Call
500 _ _ |a The original abstract contains figures that cannot be shown here.
520 _ _ |a Monocular depth estimation (MDE) is a challenging task in computer vision, often hindered by the cost and scarcity of high-quality labeled datasets. We tackle this challenge using auxiliary datasets from related vision tasks for joint training of a shared decoder on top of a pre-trained vision foundation model, while giving a higher weight to MDE.In particular, we leverage a frozen DINOv2 ViT Giant model as a feature extractor, bypassing the need for fine-tuning, and jointly train a shared DPT decoder with auxiliary datasets from related tasks to improve MDE. We illustrate the qualitative and quantitative improvements of our method over the DINOv2 MDE baseline in Figures 1 and 2, respectively.Notably, compared to the recent Depth Anything, which reports no improvements using a jointly fine-tuned DINOv2 ViT Large and task-specific decoders, our method successfully leverages auxiliary tasks.Through extensive experiments we demonstrate the benefits of incorporating various auxiliary datasets and tasks to improve MDE quality on average by ~11% for related datasets. Our experimental analysis shows that auxiliary tasks have different impacts, confirming the importance of task selection, highlighting that quality gains are not achieved by merely adding data. Remarkably, our study reveals that using semantic segmentation datasets as multi-label dense classification often results in additional quality gains.
536 _ _ |a 5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511)
|0 G:(DE-HGF)POF4-5111
|c POF4-511
|f POF IV
|x 0
536 _ _ |a 5112 - Cross-Domain Algorithms, Tools, Methods Labs (ATMLs) and Research Groups (POF4-511)
|0 G:(DE-HGF)POF4-5112
|c POF4-511
|f POF IV
|x 1
536 _ _ |a SLNS - SimLab Neuroscience (Helmholtz-SLNS)
|0 G:(DE-Juel1)Helmholtz-SLNS
|c Helmholtz-SLNS
|x 2
700 1 _ |a Yildiz, Erenus
|0 P:(DE-Juel1)191034
|b 1
|u fzj
700 1 _ |a Cao, Zhuo
|0 P:(DE-Juel1)199019
|b 2
|u fzj
700 1 _ |a Morrison, Abigail
|0 P:(DE-Juel1)151166
|b 3
|u fzj
700 1 _ |a Krajsek, Kai
|0 P:(DE-Juel1)129347
|b 4
|u fzj
700 1 _ |a Assent, Ira
|0 P:(DE-Juel1)188313
|b 5
|u fzj
700 1 _ |a Scharr, Hanno
|0 P:(DE-Juel1)129394
|b 6
|u fzj
909 C O |o oai:juser.fz-juelich.de:1034963
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)188471
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)191034
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)199019
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)151166
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)129347
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)188313
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)129394
913 1 _ |a DE-HGF
|b Key Technologies
|l Engineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action
|1 G:(DE-HGF)POF4-510
|0 G:(DE-HGF)POF4-511
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Enabling Computational- & Data-Intensive Science and Engineering
|9 G:(DE-HGF)POF4-5111
|x 0
913 1 _ |a DE-HGF
|b Key Technologies
|l Engineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action
|1 G:(DE-HGF)POF4-510
|0 G:(DE-HGF)POF4-511
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Enabling Computational- & Data-Intensive Science and Engineering
|9 G:(DE-HGF)POF4-5112
|x 1
914 1 _ |y 2024
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IAS-8-20210421
|k IAS-8
|l Datenanalyse und Maschinenlernen
|x 0
920 1 _ |0 I:(DE-Juel1)IAS-6-20130828
|k IAS-6
|l Computational and Systems Neuroscience
|x 1
920 1 _ |0 I:(DE-Juel1)JSC-20090406
|k JSC
|l Jülich Supercomputing Center
|x 2
980 _ _ |a conf
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IAS-8-20210421
980 _ _ |a I:(DE-Juel1)IAS-6-20130828
980 _ _ |a I:(DE-Juel1)JSC-20090406
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21