001034975 001__ 1034975
001034975 005__ 20250203133243.0
001034975 0247_ $$2doi$$a10.1016/j.ijplas.2024.104201
001034975 0247_ $$2ISSN$$a0749-6419
001034975 0247_ $$2ISSN$$a1879-2154
001034975 0247_ $$2datacite_doi$$a10.34734/FZJ-2025-00081
001034975 0247_ $$2WOS$$aWOS:001402762100001
001034975 037__ $$aFZJ-2025-00081
001034975 082__ $$a530
001034975 1001_ $$0P:(DE-Juel1)190548$$aTandogan, Tarik$$b0$$ufzj
001034975 245__ $$aA multi-physics model for the evolution of grain microstructure
001034975 260__ $$aFrankfurt, M. [u.a.]$$bPergamon Press$$c2025
001034975 3367_ $$2DRIVER$$aarticle
001034975 3367_ $$2DataCite$$aOutput Types/Journal article
001034975 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1736160821_29200
001034975 3367_ $$2BibTeX$$aARTICLE
001034975 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001034975 3367_ $$00$$2EndNote$$aJournal Article
001034975 520__ $$aWhen a metal is loaded mechanically at elevated temperatures, its grain microstructure evolves due to multiple physical mechanisms. Two of which are the curvature-driven migration of the grain boundaries due to increased mobility, and the formation of subgrains due to severe plastic deformation. Similar phenomena are observed during heat treatment subsequent to severe plastic deformation. Grain boundary migration and plastic deformation simultaneously change the lattice orientation at any given material point, which is challenging to simulate consistently. The majority of existing simulation approaches tackle this problem by applying separate, specialized models for mechanical deformation and grain boundary migration sequentially. Significant progress was made recognizing that the Cosserat continuum represents an ideal framework for the coupling between different mechanisms causing lattice reorientation, since rotations are native degrees of freedom in this setting.In this work we propose and implement a multi-physics model, which couples Cosserat crystal plasticity to Henry–Mellenthin–Plapp (HMP) type orientation phase-field in a single thermodynamically consistent framework for microstructure evolution. Compared to models based on the Kobayashi–Warren–Carter (KWC) phase-field, the HMP formulation removes the nonphysical term linear in the gradient of orientation from the free energy density, thus eliminating long-range interactions between grain boundaries. Further, HMP orientation phase field can handle inclination-dependent grain boundary energies. We evaluate the model’s predictions and numerical performance within a two-dimensional finite element framework, and compare it to a previously published results based on KWC phase-field coupled with Cosserat mechanics.
001034975 536__ $$0G:(DE-HGF)POF4-5111$$a5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511)$$cPOF4-511$$fPOF IV$$x0
001034975 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001034975 7001_ $$0P:(DE-Juel1)186706$$aBudnitzki, Michael$$b1$$eCorresponding author$$ufzj
001034975 7001_ $$0P:(DE-Juel1)186075$$aSandfeld, Stefan$$b2$$ufzj
001034975 773__ $$0PERI:(DE-600)2012499-5$$a10.1016/j.ijplas.2024.104201$$gVol. 185, p. 104201 -$$p104201 -$$tInternational journal of plasticity$$v185$$x0749-6419$$y2025
001034975 8564_ $$uhttps://juser.fz-juelich.de/record/1034975/files/1-s2.0-S0749641924003280-main.pdf$$yOpenAccess
001034975 8767_ $$d2025-01-10$$eHybrid-OA$$jDEAL
001034975 909CO $$ooai:juser.fz-juelich.de:1034975$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC_DEAL$$popen_access$$popenaire
001034975 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)190548$$aForschungszentrum Jülich$$b0$$kFZJ
001034975 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)186706$$aForschungszentrum Jülich$$b1$$kFZJ
001034975 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)186075$$aForschungszentrum Jülich$$b2$$kFZJ
001034975 9131_ $$0G:(DE-HGF)POF4-511$$1G:(DE-HGF)POF4-510$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5111$$aDE-HGF$$bKey Technologies$$lEngineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action$$vEnabling Computational- & Data-Intensive Science and Engineering$$x0
001034975 9141_ $$y2025
001034975 915pc $$0PC:(DE-HGF)0000$$2APC$$aAPC keys set
001034975 915pc $$0PC:(DE-HGF)0001$$2APC$$aLocal Funding
001034975 915pc $$0PC:(DE-HGF)0002$$2APC$$aDFG OA Publikationskosten
001034975 915pc $$0PC:(DE-HGF)0125$$2APC$$aDEAL: Elsevier 09/01/2023
001034975 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2023-08-26
001034975 915__ $$0LIC:(DE-HGF)CCBYNCND4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
001034975 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2023-08-26
001034975 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001034975 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-12
001034975 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-12
001034975 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2024-12-12
001034975 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-12
001034975 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bINT J PLASTICITY : 2022$$d2024-12-12
001034975 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-12
001034975 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2024-12-12
001034975 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2024-12-12
001034975 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bINT J PLASTICITY : 2022$$d2024-12-12
001034975 920__ $$lyes
001034975 9201_ $$0I:(DE-Juel1)IAS-9-20201008$$kIAS-9$$lMaterials Data Science and Informatics$$x0
001034975 9801_ $$aFullTexts
001034975 980__ $$ajournal
001034975 980__ $$aVDB
001034975 980__ $$aUNRESTRICTED
001034975 980__ $$aI:(DE-Juel1)IAS-9-20201008
001034975 980__ $$aAPC