001     1034975
005     20250203133243.0
024 7 _ |a 10.1016/j.ijplas.2024.104201
|2 doi
024 7 _ |a 0749-6419
|2 ISSN
024 7 _ |a 1879-2154
|2 ISSN
024 7 _ |a 10.34734/FZJ-2025-00081
|2 datacite_doi
024 7 _ |a WOS:001402762100001
|2 WOS
037 _ _ |a FZJ-2025-00081
082 _ _ |a 530
100 1 _ |a Tandogan, Tarik
|0 P:(DE-Juel1)190548
|b 0
|u fzj
245 _ _ |a A multi-physics model for the evolution of grain microstructure
260 _ _ |a Frankfurt, M. [u.a.]
|c 2025
|b Pergamon Press
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1736160821_29200
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a When a metal is loaded mechanically at elevated temperatures, its grain microstructure evolves due to multiple physical mechanisms. Two of which are the curvature-driven migration of the grain boundaries due to increased mobility, and the formation of subgrains due to severe plastic deformation. Similar phenomena are observed during heat treatment subsequent to severe plastic deformation. Grain boundary migration and plastic deformation simultaneously change the lattice orientation at any given material point, which is challenging to simulate consistently. The majority of existing simulation approaches tackle this problem by applying separate, specialized models for mechanical deformation and grain boundary migration sequentially. Significant progress was made recognizing that the Cosserat continuum represents an ideal framework for the coupling between different mechanisms causing lattice reorientation, since rotations are native degrees of freedom in this setting.In this work we propose and implement a multi-physics model, which couples Cosserat crystal plasticity to Henry–Mellenthin–Plapp (HMP) type orientation phase-field in a single thermodynamically consistent framework for microstructure evolution. Compared to models based on the Kobayashi–Warren–Carter (KWC) phase-field, the HMP formulation removes the nonphysical term linear in the gradient of orientation from the free energy density, thus eliminating long-range interactions between grain boundaries. Further, HMP orientation phase field can handle inclination-dependent grain boundary energies. We evaluate the model’s predictions and numerical performance within a two-dimensional finite element framework, and compare it to a previously published results based on KWC phase-field coupled with Cosserat mechanics.
536 _ _ |a 5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511)
|0 G:(DE-HGF)POF4-5111
|c POF4-511
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Budnitzki, Michael
|0 P:(DE-Juel1)186706
|b 1
|e Corresponding author
|u fzj
700 1 _ |a Sandfeld, Stefan
|0 P:(DE-Juel1)186075
|b 2
|u fzj
773 _ _ |a 10.1016/j.ijplas.2024.104201
|g Vol. 185, p. 104201 -
|0 PERI:(DE-600)2012499-5
|p 104201 -
|t International journal of plasticity
|v 185
|y 2025
|x 0749-6419
856 4 _ |u https://juser.fz-juelich.de/record/1034975/files/1-s2.0-S0749641924003280-main.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:1034975
|p openaire
|p open_access
|p OpenAPC_DEAL
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)190548
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)186706
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)186075
913 1 _ |a DE-HGF
|b Key Technologies
|l Engineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action
|1 G:(DE-HGF)POF4-510
|0 G:(DE-HGF)POF4-511
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Enabling Computational- & Data-Intensive Science and Engineering
|9 G:(DE-HGF)POF4-5111
|x 0
914 1 _ |y 2025
915 p c |a APC keys set
|2 APC
|0 PC:(DE-HGF)0000
915 p c |a Local Funding
|2 APC
|0 PC:(DE-HGF)0001
915 p c |a DFG OA Publikationskosten
|2 APC
|0 PC:(DE-HGF)0002
915 p c |a DEAL: Elsevier 09/01/2023
|2 APC
|0 PC:(DE-HGF)0125
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2023-08-26
915 _ _ |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
|0 LIC:(DE-HGF)CCBYNCND4
|2 HGFVOC
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2023-08-26
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-12-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2024-12-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-12
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b INT J PLASTICITY : 2022
|d 2024-12-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2024-12-12
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2024-12-12
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b INT J PLASTICITY : 2022
|d 2024-12-12
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IAS-9-20201008
|k IAS-9
|l Materials Data Science and Informatics
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IAS-9-20201008
980 _ _ |a APC


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21