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A B S T R A C T

When a metal is loaded mechanically at elevated temperatures, its grain microstructure evolves
due to multiple physical mechanisms. Two of which are the curvature-driven migration of the
grain boundaries due to increased mobility, and the formation of subgrains due to severe plastic
deformation. Similar phenomena are observed during heat treatment subsequent to severe
plastic deformation. Grain boundary migration and plastic deformation simultaneously change
the lattice orientation at any given material point, which is challenging to simulate consistently.
The majority of existing simulation approaches tackle this problem by applying separate,
specialized models for mechanical deformation and grain boundary migration sequentially.
Significant progress was made recognizing that the Cosserat continuum represents an ideal
framework for the coupling between different mechanisms causing lattice reorientation, since
rotations are native degrees of freedom in this setting.

In this work we propose and implement a multi-physics model, which couples Cosserat
crystal plasticity to Henry–Mellenthin–Plapp (HMP) type orientation phase-field in a single
thermodynamically consistent framework for microstructure evolution. Compared to models
based on the Kobayashi–Warren–Carter (KWC) phase-field, the HMP formulation removes the
nonphysical term linear in the gradient of orientation from the free energy density, thus
eliminating long-range interactions between grain boundaries. Further, HMP orientation phase
field can handle inclination-dependent grain boundary energies. We evaluate the model’s
predictions and numerical performance within a two-dimensional finite element framework, and
compare it to a previously published results based on KWC phase-field coupled with Cosserat
mechanics.

. Introduction

Forming of metallic alloys involves deformation at elevated temperatures and heat treatment subsequent to severe plastic
eformation, both of which extensively alter the granular microstructure and consequently the macroscopic material properties.
he evolution of the polycrystalline structure comprised of grains of different sizes, shapes and orientations, and the corresponding
rain boundary network can occur through multiple physical mechanisms including viscoplastic deformation, static and dynamic
ecrystallization, recovery, grain nucleation and growth (Rollett et al., 2017). Viscoplastic deformation changes the orientation
f the crystal lattice, which can lead to the formation of localized slip and kink bands (Asaro and Rice, 1977; Marano et al.,
019) and the accompanied fragmentation of grains into sub-grains (Sedláček et al., 2002). Inside the grains dislocations build
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up, often non-homogeneously, due to localized deformation and random trapping (Ashby, 1970). The resulting increase of energy is
 driving force for the motion of grain boundaries, the mobility of which is related to misorientation between the grains (Gottstein

and Shvindlerman, 2009). Grain boundary motion is possible via coordinated shuffling of atoms, which also reorients the crystal
lattice. During recrystallization, grains tend to nucleate at locations of high misorientation, sites with high dislocation density and
at second-phase particles, which then grow into the neighboring grains reducing the total energy.

These processes simultaneously change the lattice orientation at any given material point, which is challenging to simulate
consistently. At atomistic length scale, molecular dynamics simulations were able to capture the complex physics of grain boundary
deformation and motion (Mishin et al., 2010; Zhu et al., 2020; Chen et al., 2024). While they provide interesting insights, it is not
feasible to apply them to the time and length scales of polycrystal evolution at mesoscale. Most of the mesoscale models treat the
evolution mechanisms separately, covering either deformation or evolution of the grain structure. Classical crystal plasticity theories
or bulk plasticity with fixed grain boundaries have been improved rigorously, and can accurately predict viscoplastic deformation in
ngineering problems (Roters et al., 2010), while generalized non-local theories make it possible to incorporate physical mechanisms
uch as size effects, strain localization and grain boundary dislocation interaction (Forest et al., 2000; Gurtin, 2000, 2008; Mayeur

and McDowell, 2014; Yalçinkaya et al., 2021; Ryś et al., 2022; Forest and Ghiglione, 2023). Similarly, a more accurate continuum
description of grain boundaries is possible with disclination and disconnection density based models (Sun et al., 2016, 2018; Joshi
et al., 2022). The kinetics of grain boundary motion have been studied with a number of methods such as vertex techniques
(cf. Soares et al., 1985; Gill and Cocks, 1996), cellular automata (e.g. Marx et al., 1999; Raabe, 2002), Monte-Carlo (Srolovitz,
1986; Rollett et al., 1992), level-set methods (Chen, 1995; Bernacki et al., 2008) and phase field models (Tourret et al., 2022),
where the last two have the advantage of tracking the moving interface implicitly. The phase-field approaches for grain boundary
migration are divided mainly into multi-phase field models (see Steinbach et al., 1996; Steinbach and Pezzolla, 1999; Fan and Chen,
1997) and orientation phase field models (cf. Kobayashi et al., 2000; Warren et al., 2003; Henry et al., 2012).

For the coupled evolution problem, the above mentioned independent methods have been combined mainly by employing them
equentially or through a phenomenological coupling. Usually, information is passed back and forth between a crystal plasticity (CP)
odel for deforming the structure and a model for grain boundary (GB) migration for evolving it, possibly with an intermediate

step for the nucleation of grains based on stochastic methods or trigger criteria such as misorientation or stored energy. McElfresh
and Marian (2023) used finite strain CP and a vertex model successively for static recrystallization and grain growth. Similarly,
the cellular automata approach was combined with CP to model static (Sitko et al., 2020) and dynamic recrystallization (Popova
t al., 2015; Li et al., 2016; Nagra et al., 2020), where Li et al. included mechanical feedback from cellular automata. Bernacki et al.

(2011) and Sarrazola et al. (2020a,b) employed a level-set framework combined with CP, while Blesgen (2017) used higher order
Cosserat CP in a staggered scheme. In a series of contributions, Takaki et al. (2009), Takaki and Tomita (2010), Takaki et al. (2014)
developed models coupling multi-phase field with various deformation theories such as CP, strain gradient CP, Kocks–Mecking and
2 models for static and dynamic recrystallization problems. Chen et al. (2015), Zhao et al. (2016) and Hu et al. (2021) efficiently
imulated three dimensional static and dynamic recrystallization as well as deformation twinning in polycrystals by using spectral

Fast-Fourier-Transform based multi-phase field and CP solvers. Abrivard et al. (2012) and Luan et al. (2020) coupled the KWC type
orientation phase field extended with a stored dislocation energy term into finite element CP. Unlike multi-phase field, KWC has
he advantage of representing lattice orientation as a degree of freedom. Mikula et al. (2019) coupled the grain orientation in the

KWC model with the strain energy of a mechanically loaded elasto-plastic nanocrystalline system.
Although sequential combinations of different methods have been used successfully to model microstructure evolution along with

eformation, several authors have sought a unified thermodynamically consistent field theory that strongly couples deformation
and microstructure evolution. A class of sharp interface continuum models were developed, where shear loading can stimulate
grain boundary motion (Cahn et al., 2006; Berbenni et al., 2013; Basak and Gupta, 2015). However, they are not tuned for the

esoscale, where interaction of bulk plasticity and grain boundaries is important. Recently, Bugas and Runnels (2024) proposed a
novel reduced order multi-scale model to simulate plastic evolution of a microstructure, mediated through the shear-coupled motion
f GBs. Admal et al. (2018) and He and Admal (2021) have proposed a model that considers bulk and grain boundary plasticity in
nison. A large deformation strain gradient CP is formulated with a non-standard free energy density containing contributions from
he full dislocation density tensor inspired by the KWC type orientation phase field. Hence, it is capable of predicting both shear-
nduced and curvature driven GB motion, grain sliding, rotation and subgrain nucleation, where the GB motion is accommodated
y plastic slip process. Orientation phase field models are well suited for a strong coupling with crystal plasticity as the lattice
rientation is a continuous field in the bulk and at the interface. Ask et al. (2018a,b, 2019, 2020) have combined the modified KWC
rientation phase field of Abrivard et al. (2012) with Cosserat-type crystal plasticity with independent micro-rotation degrees of

freedom, recognizing it as a natural framework for the coupling. Lattice orientation can evolve simultaneously due to viscoplastic
deformation and GB migration, where the latter is driven by capillary forces as well as accumulated dislocation densities. The
oupling of Cosserat continuum with orientation phase field allows heterogeneous reorientation and subgrain formation in the bulk.
ecently, Ghiglione et al. (2024) showed through the torsion of a single crystal rod that the model can predict spontaneous grain

nucleation in the presence of a lattice orientation gradient.
In the present work, a novel model inspired by the work of Ask et al. (2018a) is proposed where the Henry–Mellenthin–

Plapp (HMP) type orientation phase field (Henry et al., 2012; Staublin et al., 2022) is strongly coupled with a Cosserat crystal
plasticity (CCP) framework. This model offers several improvements. By design, the HMP model removes the non-physical long
range interactions between the grain boundaries that exist in the KWC model due to the |∇𝜃| term in the free energy. Instead, the
HMP model achieves localized grain boundaries using a singular coupling function. This coupling function can be modified in order
to obtain the desired misorientation dependence of grain boundary energy without changing the variational form of the model,
2 
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e.g. for an inclination dependent energy. Moreover, the energy contribution of statistically stored dislocations (SSDs) to the free
energy density, which was added by Abrivard et al. (2012) into the KWC model to drive GB motion, is modified. Originally this
term altered the equilibrium value of the order parameter in the bulk, which is undesirable in a multi-phase context and breaks
the singular coupling function in the HMP model. We propose a form that allows similar GB kinetics without changing the order
parameter in the presence of dislocations.

This paper is structured as follows. Section 2 summarizes the general coupled orientation phase field and Cosserat CP framework,
presents the governing equations and evolution of history variables in the proposed coupled model, and finishes by comparing it
with the previous KWC+CCP framework by Ask et al. (2018a). Section 3 explores the fundamental mechanisms of the coupled model,
establishing the model’s parameters with simple numerical examples, namely, equilibrium profiles, shear loading and dislocation
driven GB migration in a periodic bicrystal structure, as well as the triple junction test for curvature driven GB motion. Finally, the
paper is concluded with a summary and an outlook in Section 4.

2. Model

This section presents the model framework, describing the kinematics, balance laws and the formulation of the constitutive laws
within a small deformation setting. As a starting point Sections 2.1 and 2.2 give an overview of the coupled Cosserat-phase field
model developed by Ask et al. (2018a) which was later modified slightly in Ask et al. (2018b), where Cosserat crystal plasticity was
oupled with KWC type orientation phase field (Kobayashi et al., 2000; Warren et al., 2003). Section 2.3 proposes the Cosserat-HMP
hase field model introducing a new free energy and some modifications, where we use a new phase field model for coupling (Henry

et al., 2012; Staublin et al., 2022). Section 2.4 specifies the dissipation potential and presents the corresponding evolution equations
or closure. Section 2.5 highlights the differences of the proposed model with the Cosserat-KWC phase field model of Ask et al.

(2018a,b).

Notation

In the following, vectors 𝑎𝑖 are denoted by
̄
𝒂, 2nd order tensors 𝐴𝑖𝑗 by 𝑨∼ , the 3rd order Levi-Civita permutation tensor 𝜖𝑖𝑗 𝑘 by 𝝐

≃
,

4th order tensors 𝐶𝑖𝑗 𝑘𝑙 by 𝑪
≈

. The Kronecker delta is denoted by 𝛿𝑖𝑗 . The gradient is denoted by ∇(.), divergence by ∇⋅(.), transpose by
(.)T, dot product by (.) ⋅ (.), double contraction by (.) ∶ (.), and tensor product by (.)⊗ (.). The transformation between pseudo-vector
×

̄
𝒂 and skew-symmetric tensor 𝑨∼

skew is given by,
×

̄
𝒂= axi(𝑨∼ skew) ∶= −1

2
𝝐
≃
∶ 𝑨∼

skew and 𝑨∼
skew = −𝝐

≃
⋅
×

̄
𝒂. (1)

2.1. Cosserat continuum coupled with orientation phase field

The Cosserat continuum introduces a microrotation tensor 𝑹∼ which relates the current state of a triad of orthonormal directors
to the initial state at each material point, independently from the displacements. In the small deformation setting, it is given by,

𝑹∼ = 𝑰∼ − 𝝐
≃
⋅
̄
𝜣 (2)

where 𝑰∼ is the identity tensor and
̄
𝜣 is the microrotation pseudo-vector. The displacement vector

̄
𝒖 together with

̄
𝜣 describes the

motion of a material point with six degrees of freedom. The objective deformation measures are given by Eringen and Kafadar
(1976)

𝒆∼ = ∇
̄
𝒖 + 𝝐

≃
⋅
̄
𝜣, 𝜿∼ = ∇

̄
𝜣, (3)

which are the deformation tensor and curvature tensor, respectively. The small deformation setting allows an additive decomposition
of the strain into elastic and plastic contributions

𝒆∼ = 𝒆∼
e + 𝒆∼

p, (4)

where plastic curvature is not considered for simplicity. The rate of the deformation tensor can be expressed as

�̇�∼ = �̇�∼ + 𝝎∼ + 𝝐
≃
⋅ ̇
̄
𝜣, (5)

where,

�̇�∼ = 1
2
[

∇ ̇
̄
𝒖 + (∇ ̇

̄
𝒖)T

]

and 𝝎∼ = 1
2
[

∇ ̇
̄
𝒖 − (∇ ̇

̄
𝒖)T

]

(6)

are the strain rate and spin tensors, respectively. The skew-symmetric part of �̇�∼ can be represented by the pseudo-vector
×

̄
�̇� = ×

̄
𝝎 − ̇

̄
𝜣, (7)

which relates the rotation of the material to the Cosserat microrotation. Using the elastic–plastic decomposition and defining plastic
and elastic spin pseudo-vectors ×

̄
𝝎p ∶=

×

̄
�̇�p and ×

̄
𝝎e ∶= ×

̄
𝝎 − ×

̄
𝝎p, respectively, we can write

× ×
̄
�̇�e =

̄
𝝎e − ̇

̄
𝜣. (8)

3 
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Eq. (8) expresses a link between the rotation rate of the crystal lattice and the Cosserat microrotation rate, which are distinct at this
point. For our purposes they should be identical, which can be enforced by the internal constraint,

×

̄
�̇�e ≡ 0, (9)

which can be implemented on the constitutive level with a penalty parameter (Forest et al., 2000; Mayeur et al., 2011; Blesgen,
2014). Alternatively, a more sophisticated and efficient duality-based formulation was proposed recently by Baek et al. (2022).

In order to include grain boundary migration, the Cosserat theory is enhanced with an orientation phase field model. The latter
efines the microstructure with the order parameter 𝜂, lattice orientation

̄
𝜣 and their gradients ∇𝜂 and ∇

̄
𝜣. The order parameter

∈ [0, 1] is a coarse-grained measure of crystalline order that takes the value 𝜂 = 1 in the bulk of the grain and 𝜂 < 1 in the diffuse
rain boundaries. The coupling of Cosserat continuum with the phase field is explained below.

2.2. Balance laws

In order to derive a consistent set of balance equations and boundary conditions, the principle of virtual power is applied using
following set of virtual rates

 =
{

�̇�⋆,∇�̇�⋆, ̇
̄
𝒖⋆,∇ ̇

̄
𝒖⋆, ̇

̄
𝜣⋆,∇ ̇

̄
𝜣⋆} . (10)

The reader is referred to Ask et al. (2018a) for the detailed derivation steps. The resulting balance equations and boundary conditions
re given by,

∇ ⋅
̄
𝝃𝜂 + 𝜋𝜂 + 𝜋ext

𝜂 = 0 in 𝛺 , (11)

∇ ⋅ 𝝈∼ +
̄
𝒇 ext =

̄
𝟎 in 𝛺 , (12)

∇ ⋅𝒎∼ + 2 ×

̄
𝝈 +

̄
𝒄ext =

̄
𝟎 in 𝛺 , (13)

̄
𝝃𝜂 ⋅ ̄

𝒏 = 𝜋c
𝜂 on 𝜕 𝛺 , (14)

𝝈∼ ⋅
̄
𝒏 =

̄
𝒇 c on 𝜕 𝛺 , (15)

𝒎∼ ⋅
̄
𝒏 =

̄
𝒄c on 𝜕 𝛺 , (16)

where
̄
𝒇 and

̄
𝒄 are forces and couples, respectively. The superscript (.)ext denotes external body forces and couples, while (.)c denotes

contact forces and couples. The outward normal to the surface 𝜕 𝛺 of the volume 𝛺 is
̄
𝒏. The generalized stresses 𝜋𝜂 and

̄
𝝃𝜂 correspond

to Gurtin’s microforces (Gurtin, 1996) and are conjugate to the order parameter 𝜂 and its gradient ∇𝜂. The stress 𝝈∼ (which is not
ymmetric) is conjugate to the Cosserat deformation 𝒆∼. The couple-stress 𝒎∼ is conjugate to the curvature 𝜿∼. Eqs. (11), (12) and (13)

represent balance of generalized stresses, balance of linear momentum and balance of angular momentum, respectively.

2.3. Free energy density and constitutive equations

We assume that the Helmholtz free energy density 𝛹 is defined as

𝜌𝛹 ∶= 𝜓
(

𝜂 ,∇𝜂 , 𝒆∼e,𝜿∼, 𝑟𝛼
)

(17)

where 𝑟𝛼 are internal variables related to plasticity. Applying the Clausius-Duhem inequality results in
−
[

𝜋𝜂 +
𝜕 𝜓
𝜕 𝜂

]

�̇� +
[

̄
𝝃𝜂 −

𝜕 𝜓
𝜕∇𝜂

]

⋅ ∇�̇� +
[

𝝈∼ −
𝜕 𝜓
𝜕𝒆∼e

]

∶ �̇�∼
e +

[

𝒎∼ −
𝜕 𝜓
𝜕𝜿∼

]

∶ �̇�∼ + 𝝈∼ ∶ �̇�∼
p −

∑

𝛼

𝜕 𝜓
𝜕 𝑟𝛼

�̇�𝛼 ≥ 0. (18)

In order to recover the relaxation behavior of the phase field model, the stress 𝜋𝜂 is assumed to contain energetic and dissipative
contributions such that

𝜋𝜂 = 𝜋eq
𝜂 + 𝜋dis

𝜂 . (19)

Then, the constitutive relations are given by

𝜋eq
𝜂 = − 𝜕 𝜓

𝜕 𝜂 , ̄
𝝃𝜂 =

𝜕 𝜓
𝜕∇𝜂

, 𝝈∼ =
𝜕 𝜓
𝜕𝒆∼e

, 𝒎∼ =
𝜕 𝜓
𝜕𝜿∼

. (20)

For the coupled problem, a general form of free energy functional, including phase field variables and deformation measures, is
considered:

𝜓
(

𝜂 ,∇𝜂 , 𝒆∼e,𝜿∼, 𝑟𝛼
)

= 𝑓0

[

𝛼 𝑉 (𝜂) + 𝜈2

2
|∇𝜂|2 + 𝜇2𝑔(𝜂)𝑎2(

̄
𝒏,
̄
𝜣)‖𝜿∼‖

2
]

+ 1
2
𝜺∼
e ∶ 𝑬

≈
s ∶ 𝜺∼

e + 2𝜇c(𝜂) ×

̄
𝒆e ⋅ ×

̄
𝒆e + 𝜙(𝜂)

𝑁
∑

𝛼=1

𝜆
2
𝜇e𝑟2𝛼 .

(21)

The first line of (21) is a generalization of the Henry–Mellenthin–Plapp free energy (Henry et al., 2012) to three dimensions and
caled with the normalization parameter 𝑓 with unit J/m3. The potential 𝑉 (𝜂) penalizes the existence of grain boundaries, where
0

4 
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𝜂 < 1, and depending on whether it is a double-well or single-well potential, it is possible to have solid and liquid phases or solid
phase only. For our purposes, we choose a single-well potential in analogy to the one used by Staublin et al. (2022). The second and
third terms are grain boundary contributions in terms of the order parameter 𝜂 and the lattice curvature 𝜿∼, penalizing gradients in
𝜂 and

̄
𝜣, respectively, where the coefficients 𝜈 and 𝜇 with unit m and the non-dimensional 𝛼 set the length scale of the diffuse grain

boundary. Localized grain boundary solutions are made possible by the third term through 𝑔(𝜂), the singular coupling function that
tends to infinity as 𝜂 → 1, relating lattice orientation to the phase field. The anisotropy coefficient 𝑎(

̄
𝒏,
̄
𝜣) can be used to introduce

an inclination dependence of the grain boundary energy, where
̄
𝒏 is the grain boundary normal (Staublin et al., 2022). A similar

dependence within the KWC model is only possible through modified formulations (Admal et al., 2019; Kim et al., 2021).
The second line of (21) contains the energy contribution due to symmetric and skew-symmetric elastic deformation, where 𝑬

≈
s

s the 4th order elasticity tensor and 𝜇c(𝜂) is the Cosserat couple modulus which can potentially have different values depending on
order parameter. If 𝜇c is sufficiently large, the skew-symmetric part of the deformation is penalized, which enforces the constraint
(9); then the Cosserat microrotation follows the lattice orientation. The last term is the energy contribution due to accumulated
dislocations, where 𝑁 is the number of slip systems, 𝜆 is a parameter close to 0.3 (Hirth et al., 1983), 𝜇e is the shear modulus and
𝑟𝛼 are internal variables associated with SSDs. 𝜙(𝜂) is a coupling function depending on the order parameter, which allows SSDs to
act as a driving force for the migration of grain boundaries.

Restricting the problem to two dimensions allows a considerable simplification of the equations. In 2D, microrotations reduce
to

̄
𝜣 = [0 0 𝜃]T, hence it follows that ×

̄
𝝎 =

[

0 0 ×𝜔
]T and ×

̄
𝒆 =

[

0 0 ×𝑒
]T. Similarly, the couple-stress 𝒎∼ reduces to

̄
𝒎𝜃 = [𝑚31 𝑚32 𝑚33]T.

Further, assuming an isotropic grain boundary energy and constant 𝜇c, Eq. (21) simplifies to
𝜓
(

𝜂 ,∇𝜂 , 𝒆∼e,∇𝜃 , 𝑟𝛼
)

= 𝑓0

[

𝛼 𝑉 (𝜂) + 𝜈2

2
|∇𝜂|2 + 𝜇2𝑔(𝜂)|∇𝜃|2

]

+ 1
2
𝜺∼
e ∶ 𝑬

≈
s ∶ 𝜺∼

e + 2𝜇c
(×𝑒 e

)2 + 𝜙(𝜂)
𝑁
∑

𝛼=1

𝜆
2
𝜇e𝑟2𝛼 .

(22)

Inserting the free energy (22) into (20), we obtain the state laws

𝜋eq
𝜂 = − 𝑓0

[

𝛼 𝑉,𝜂 + 𝜇2𝑔,𝜂|∇𝜃|2
]

− 𝜙,𝜂
𝑁
∑

𝛼=1

𝜆
2
𝜇e𝑟2𝛼 , (23)

̄
𝝃𝜂 =𝑓0

[

𝜈2∇𝜂
]

, (24)

̄
𝒎𝜃 =𝑓0

[

2𝜇2𝑔(𝜂)∇𝜃
]

, (25)

𝝈∼ =𝑬
≈
s ∶ 𝜺∼

e − 2𝜇c 𝝐≃ ⋅
×

̄
𝒆e, (26)

where (.),𝜂 denotes partial derivative w.r.t. the order parameter 𝜂. The last term in (26) is the skew part of the stress tensor and it
is equivalent to ×

̄
𝝈 = 2𝜇c ×

̄
𝒆e, or ×𝜎 = 2𝜇c ×𝑒e in 2D.

2.4. Dissipation potential and evolution equations

The formulation of the evolution equations are slightly different between Ask et al. (2018a) and Ask et al. (2018b) in their
treatment of the dissipation potential and an eigen-deformation term. Firstly, in the second publication the dissipative contribution
to the stress 𝝈∼ is dropped. Previously, this resulted in a separate evolution term of 𝛩 similar to the phase field model, which
ecomes redundant in the coupled model. Secondly, the eigen-deformation is considered as a part of plastic deformation rather
han as a separate strain, whose function is explained below. This work follows the approach of Ask et al. (2018b) summarized in
he following.

The dissipation potential 𝛺 is assumed to contain two separate contributions in terms of 𝝈∼ , 𝑅𝛼 and 𝜋dis
𝜂

𝛺 = 𝛺p(𝝈∼ , 𝑅𝛼 ; 𝜂) +𝛺𝜂(𝜋dis
𝜂 ), (27)

where

𝑅𝛼 =
𝜕 𝜓
𝜕 𝑟𝛼

(28)

are thermodynamic forces related to 𝑟𝛼 . The plastic flow, hardening rules, and evolution equations are obtained from 𝛺 as

�̇�∼
p = 𝜕 𝛺p

𝜕𝝈∼
, �̇�𝛼 = − 𝜕 𝛺

p

𝜕 𝑅𝛼
, �̇� = − 𝜕 𝛺𝜂

𝜕 𝜋dis
𝜂
. (29)

The plastic deformation mechanism is implemented through a Cosserat crystal plasticity framework. The plastic dissipation
potential is chosen as,

𝛺p(𝝈∼ , 𝑅𝛼 ; 𝜂) =
𝑁
∑

𝛼=1

𝐾v
𝑛 + 1

⟨

|𝜏𝛼| − 𝑅𝛼∕𝜙(𝜂)
𝐾v

⟩𝑛+1
+ 1

2
𝜏−1∗ (𝜂) ×

̄
𝝈 ⋅

×

̄
𝝈, (30)

where ⟨⋅⟩ are Macaulay brackets defined by ⟨⋅⟩ ∶= max(0, ⋅), 𝐾v and 𝑛 are viscosity parameters, 𝜏𝛼 is the resolved shear stress, and 𝑅𝛼
is the critical resolved shear stress of slip system 𝛼. While the first term in (30) is standard, the second term is included to account
for atomic reshuffling happening at the grain boundaries during migration and resulting in reorientation (Ask et al., 2018b), which
5 
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is a purely skew-symmetric contribution acting only on the plastic spin. It is supposed be active only in the grain boundary region,
which is implemented by introducing an inverse mobility function 𝜏∗(𝜂) that is chosen to be small inside grain boundary and large
n bulk. Its explicit form is given in Section 2.5. From the free energy functional we have,

𝑅𝛼 =
𝜕 𝜓
𝜕 𝑟𝛼

= 𝜆𝜙(𝜂)𝜇e𝑟𝛼 = 𝜆𝜙(𝜂)𝜇e𝑏

√

√

√

√

√

𝑁
∑

𝛽=1
ℎ𝛼 𝛽𝜌𝛽 , (31)

where the internal variables 𝑟𝛼 are related to the SSD densities 𝜌𝛼 as

𝑟𝛼 = 𝑏

√

√

√

√

√

𝑁
∑

𝛽=1
ℎ𝛼 𝛽𝜌𝛽 . (32)

The parameter 𝑏 is the norm of the Burgers vector of the considered slip system family and ℎ𝛼 𝛽 is the slip system interaction matrix.
he resolved shear stress 𝜏𝛼 is the projection of stress 𝝈∼ on slip system 𝛼

𝜏𝛼 =
̄
𝒍𝛼 ⋅ 𝝈∼ ⋅

̄
𝒏𝛼 , (33)

where
̄
𝒍𝛼 is the slip direction and

̄
𝒏𝛼 is the slip plane normal. Since in the Cosserat framework the stress tensor is generally non-

symmetric, the skew part contributes an additional term to the resolved shear stress which can considered to be a size dependent
kinematic hardening (Forest, 2008). Substituting (30) into (29), we get the evolution of plastic deformation

�̇�∼
p =

𝑁
∑

𝛼=1
�̇�𝛼
̄
𝒍𝛼 ⊗

̄
𝒏𝛼 + 1

2
𝜏−1∗ (𝜂)skew(𝝈∼), (34)

with

�̇�𝛼 =
⟨

|𝜏𝛼| − 𝑅𝛼∕𝜙(𝜂)
𝐾v

⟩𝑛
sign 𝜏𝛼 (35)

as the slip rate according to the viscoplastic flow rule from Cailletaud (1992). We can write
×

̄
𝒆p = ×

̄
𝒆slip + ×

̄
𝒆∗, (36)

where
×

̄
�̇�slip = ×

̄
𝝎p − ×

̄
𝝎∗, 𝝎∼

p−𝝎∼
∗= skew

( 𝑁
∑

𝛼=1
�̇�𝛼
̄
𝒍𝛼 ⊗

̄
𝒏𝛼

)

, (37)

×

̄
�̇�∗ = ×

̄
𝝎∗, ×

̄
𝝎∗=𝜏−1∗ (𝜂) ×

̄
𝝈. (38)

The eigenrotation ×

̄
𝒆∗ is introduced to make sure that initial stresses in a polycrystal composed of grains with different orientations

re zero. Consider, the elastic skew-symmetric deformation
×

̄
𝒆e = axi(skew[∇𝑢]) − ×

̄
𝒆p −

̄
𝜣 = axi(skew[∇𝑢]) − ×

̄
𝒆slip − ×

̄
𝒆∗ −

̄
𝜣. (39)

If the Cosserat microrotation represents the lattice orientation and the initial total deformation is assumed to be zero, clearly elastic
deformation is non-zero, unless we set,

×

̄
𝒆∗(𝑡 = 0) = ×

̄
𝒆p(𝑡 = 0) = −

̄
𝜣(𝑡 = 0). (40)

This non-zero initial condition of plastic slip is adopted following Admal et al. (2018) and Ask et al. (2018b). From (39), it is seen
hat a moving grain boundary results in non-zero ×

̄
𝒆e and ×

̄
𝝈 in the region of the moving front, which are relaxed by the evolution of

×

̄
∗ in (38).

During plastic deformation, the SSD density evolves by multiplication and annihilation mechanisms following a modified
ocks–Mecking–Teodosiu law (Abrivard et al., 2012; Ask et al., 2018a,b), such that

�̇�𝛼 =

⎧

⎪

⎨

⎪

⎩

1
𝑏

(

𝐾
√

∑

𝛽 𝑎𝛼 𝛽𝜌𝛽 − 2𝑑 𝜌𝛼
)

|�̇�| − 𝜌𝛼𝐶D𝐴(|∇𝜃|)�̇� if �̇� > 0

1
𝑏

(

𝐾
√

∑

𝛽 𝑎𝛼 𝛽𝜌𝛽 − 2𝑑 𝜌𝛼
)

|�̇�| if �̇� ≤ 0,
(41)

where the extra term in the first line accounts for the static recovery of dislocations in the wake of a sweeping grain bound-
ary (Abrivard et al., 2012; Ask et al., 2018a; Bailey and Hirsch, 1962). 𝐾 is the mobility constant, 𝑑 is the critical annihilation
istance between dislocations of opposite sign, and 𝑎𝛼 𝛽 is an interaction matrix for cross-slip. Either partial recovery, or in the case

of sufficiently high values of 𝐶D, full recovery in the wake is achieved, and the function 𝐴(|∇𝜃|) = t anh(𝐶2
A|∇𝜃|

2) localizes this
ecovery to the grain boundary region, where 𝐶A has unit m. This is a simplistic representation of the combined absorption and

annihilation recovery mechanisms that occur during the migration of a grain boundary. The evolution of the order parameter 𝜂 is
governed by the quadratic dissipation potential

𝜂 1 −1 dis 2
𝛺 =
2
𝜏𝜂 (𝜋𝜂 ) (42)
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chosen in analogy to Gurtin (1996) and Abrivard et al. (2012), where 𝜏𝜂(𝜂 ,∇𝜂 ,∇𝜃 , 𝑇 ) is a positive scalar function. Applying (29) we
get

𝜋dis
𝜂 = −𝜏𝜂 �̇� . (43)

Inserting (23)–(25) and (43) into the balance laws (11) and (13), while assuming vanishing body forces and couples forces, gives
the governing equations for the order parameter 𝜂 and lattice orientation 𝜃:

𝜏𝜂 �̇� = 𝑓0𝜈
2∇2𝜂 − 𝑓0

[

𝛼 𝑉,𝜂 + 𝜇2𝑔,𝜂|∇𝜃|2
]

− 𝜙,𝜂
𝑁
∑

𝛼=1

𝜆
2
𝜇e𝑟2𝛼 (44)

0 = 𝑓0∇ ⋅
[

𝜇2𝑔(𝜂)∇𝜃
]

+ 2𝜇c ×𝑒e (45)

where the differences from Ask et al. (2018a,b, 2019) are highlighted by the gray box to be discussed in Section 2.5. Eq. (45) can
be rewritten using (38) as

− 𝜏∗(𝜂)
×
�̇�∗ = 𝑓0∇ ⋅

[

𝜇2𝑔(𝜂)∇𝜃
]

. (46)

Setting 𝜇c = 0 recovers the HMP evolution equations [cf. Henry et al., 2012; Staublin et al., 2022] without 𝜃 relaxation and with
the addition of an SSD term.

In the free energies (21) or (22), the choice of potential 𝑉 (𝜂) and singular coupling function 𝑔(𝜂) of the phase field model requires
some care as described by Henry et al. (2012) and Staublin et al. (2022). The following conditions must be met:

1. The value of the potential in the bulk of the grain is 𝑉 (1) = 0
2. 1 is a minimum: 𝑉 ′(1) = 0
3. The potential should have only one single minimum: 𝑉 ′′(𝜂) > 0 for all 𝜂.
4. To enable a uniformly strained solid (small constant ∇𝜃) to be stable against the spontaneous formation of grain boundaries,

we follow Henry et al. (2012), and impose the constraint 9𝑉 ′′(1) > 𝑉 ′′′(1) when the coupling function 𝑔(𝜂) ∼ (1 − 𝜂)−2. This
condition is irrelevant if we choose 𝑔(𝜂) ∼ (1 − 𝜂)−3 and thus this divergence of 𝑔(𝜂) stabilizes localized boundaries against
uniform strain regardless. This condition should be reconsidered if a different 𝑔(𝜂) is used.

We choose a simple second order single-well potential 𝑉 (𝜂) satisfying the above conditions

𝑉 (𝜂) = 1
2
(1 − 𝜂)2 (47)

and adopt the singular coupling function in Staublin et al. (2022)

𝑔(𝜂) = 7𝜂3 − 6𝜂4
(1 − 𝜂)3 . (48)

2.5. Comparison with KWC+CCP

The main form of the free energy density and the governing equations proposed by Ask et al. (2018b, 2019) are as follows,

𝜓KWC+CCP (𝜂 ,∇𝜂 , 𝒆∼e,∇𝜃 , 𝑟𝛼
)

= 𝑓0

[

𝑉 (𝜂) + 𝜈2

2
|∇𝜂|2 + 𝑠𝑔∗(𝜂)|∇𝜃| + 𝜖2

2
ℎ∗(𝜂)|∇𝜃|2

]

+ 1
2
𝜺∼
e ∶ 𝑬

≈
s ∶ 𝜺∼

e + 2𝜇c
(×𝑒e

)2 + 𝜂
𝑁
∑

𝛼=1

𝜆
2
𝜇e𝑟2𝛼 ,

(49)

𝜏𝜂 �̇� = 𝑓0𝜈
2∇2𝜂 − 𝑓0

[

𝑉,𝜂 + 𝑠𝑔∗,𝜂|∇𝜃| + 𝜖2

2
ℎ∗,𝜂|∇𝜃|

2
]

− 1
𝑁
∑

𝛼=1

𝜆
2
𝜇e𝑟2𝛼 , (50)

0 = 𝑓0
2
∇ ⋅

[

𝑠𝑔∗(𝜂) ∇𝜃
|∇𝜃|

+ 𝜖2ℎ∗(𝜂)∇𝜃

]

+ 2𝜇c ×𝑒e, (51)

where the main differences as compared to the proposed HMP+CCP Eqs. (44) and (45) are highlighted. The most significant
difference, stemming from usage of different orientation phase field models, is the existence of the linear |∇𝜃| term in (50) and
he corresponding singular term in (51). This term is necessary in KWC and responsible for the localization of grain boundaries as

it is penalizing solutions with uniform gradient of orientation. However, as it is singular inside the grains, it requires regularization
during the numerical solution (Kobayashi et al., 2000; Warren et al., 2003). Moreover, the singular diffusion equation allows long-
range interactions between grain boundaries, which results in a rotation rate for grains independent on the distance between grain
oundaries (Kobayashi and Giga, 1999). Hence, the only way to prevent unwanted grain rotations in the KWC model is to use

a mobility function that takes small values inside the grain (Warren et al., 2003). On the other hand, the HMP model omits the
linear |∇𝜃| term in free energy, and instead uses a singular coupling function 𝑔(𝜂) which approaches infinity inside the grains. As
 consequence, it has local interaction of grain boundaries and a constant mobility is sufficient to suppress grain rotations (Henry

et al., 2012).
7 
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Table 1
Parameter set used for the coupled Cosserat Crystal Plasticity - HMP orientation phase field model.

Phase field
𝑓0 𝑡0 𝜏𝜂 𝜏∗ 𝜈 𝛼 𝜇

87 kPa 1 s 0.1𝑓0𝑡0 1𝑓0𝑡0 1 μm 150 2.5/𝜋 μm

Mechanics

𝐶11 𝐶12 𝐶44 𝜇c 𝜆 𝑏 𝐶A

160 GPa 110 GPa 75 GPa 750 GPa 0.3 0.2556 nm
√

10 μm

𝐾v 𝑛 𝐾 𝑑 ℎ𝛼 𝛽 𝑎𝛼 𝛽 𝐶D

10 MPa s1∕𝑛 10 0.1 10 nm 𝛿𝛼 𝛽 𝛿𝛼 𝛽 100

Another difference is the way the atomic reshuffling process, i.e. the term 𝜏∗(𝜂)
×
�̇�∗ in (46), is localized to the grain boundaries.

n the series of papers on the KWC+CCP model, Ask et al. (2018a, 2019, 2020) have used various forms such as

𝜏∗ = 𝜏∗ t anh−1(𝐶2
∗ |∇𝜂|

2), 𝜏∗ = 𝜏∗ t anh−1(𝐶2
∗ |∇𝜃|

2), 𝜏∗ = 𝜏∗

(

1 −
[

1 −
𝜇p
𝜀

]

exp(−𝛽p𝜀|∇𝜃|)
)

, (52)

all of which are large in the bulk of grain and small at the grain boundary, with slightly different dynamics. In the proposed
HMP+CCP model such a function already naturally exists, i.e. the singular coupling function 𝑔(𝜂). Hence, we propose

𝜏∗ = 𝜏∗𝑔(𝜂). (53)

Looking at Eq. (46), using (53) can be interpreted as a translation of the idea proposed by Korbuly et al. (2017) to the coupled
model, where they modify their mobility coefficient related to �̇� in the same way in order to counterbalance the divergence of 𝑔(𝜂)
multiplying ∇𝜃 in (45). This modification significantly improves the convergence behavior of the model; we explore its implications
or the Cosserat mechanics.

Finally, a modification of the SSD energy term in (44) or (50) is proposed. In the work of Ask et al. (2018a), the multiplier
function 𝜙(𝜂) [cf. Eq. (22)] is 𝜙(𝜂) = 𝜂, resulting in 𝜙,𝜂(𝜂) = 1. This has an important consequence on the equilibrium value of the
rder parameter inside the grains, when the dislocation density 𝜌𝛼 is non-zero. We can easily calculate it from (44) or (50). At

equilibrium, the gradient terms inside the grain and the rate term are zero, so we have

0 = 𝑓0𝛼(1 − 𝜂eq) − 𝜙,𝜂(𝜂eq)
𝑁
∑

𝛼=1

𝜆
2
𝜇e𝑟2𝛼 , (54)

or

𝜂eq = 1 −
𝜙,𝜂(𝜂eq)

∑𝑁
𝛼=1

𝜆
2𝜇

e𝑏2
∑𝑁
𝛽=1 ℎ

𝛼 𝛽𝜌𝛽
𝑓0𝛼

. (55)

It is clear that, when 𝜙,𝜂 = 1, the equilibrium value of the order parameter 𝜂eq becomes less then 1, which is a change compared to
he pure phase field model (Abrivard et al., 2012; Ask et al., 2018a). This is a significant problem for the formulation of the HMP
hase field, since the model relies on the singularity of 𝑔(𝜂) inside the grains. We believe this could also be problematic if more

complex potentials 𝑉 (𝜂) with temperature dependence and minima for different phases are considered. In (55), it can be seen that if
he derivative of 𝜙(𝜂) is taken to be zero inside the grain, i.e. 𝜙,𝜂(𝜂 = 1) = 0, then 𝜂eq = 1 independent of the SSD density. However,

since this term is also the driving force for grain boundary migration due to dislocations, the choice of the function affects the
grain boundary velocity. We have explored several polynomial forms and concluded that some of them can fit our purpose without
modifying the dynamics considerably, which is discussed in Section 3 below.

3. Numerical examples

In this section, the proposed model and its capabilities are tested through numerical examples simulated with the finite element
ethod and the results are discussed. The geometry shown in Fig. 1 is used to examine equilibrium profiles at the grain boundaries,

elastic shear loading and grain boundary migration due to stored dislocation density. The classical triple-junction problem for testing
hase field models, shown in Fig. 6, is used to confirm our numerical implementation. Finally, the setup in Fig. 1 is used again to

simulate a scenario with plastic deformation and grain boundary migration.
For these examples we consider the two dimensional form of the model governed by Eqs. (44), (12) and (45). The external body

forces and couple forces as well as the contact forces and couples in Eqs. (11)–(16) are assumed to be zero. Plane strain conditions
re assumed. We use isotropic grain boundary energies for simplicity, and focus on the mechanisms made possible by the Cosserat

coupling. The simulated material is pure copper (Cu), although we do not pursue a rigorous fitting to experimental data at this stage;
instead the model parameters are chosen to be in a reasonable range [see e.g. Tschopp et al., 2015 and Ask et al., 2019]. As presented
in Appendix A, the asymptotic analysis for the HMP phase field can also be used for the coupled model to obtain equilibrium profiles
and the isotropic grain boundary energy for given misorientations. The parameters are calibrated to have 0.5 J/m2 grain boundary
energy at a 15◦ misorientation. Unless otherwise mentioned, the model parameters given in Table 1 are used in the simulations.

The model has been implemented in the FEniCS 2019 open-source finite element library (Alnaes et al., 2015) used together with
the MFront code generator for the material models (Helfer et al., 2015). FEniCS handles the finite element framework and the global
Newton–Raphson procedure, while MFront is responsible for the constitutive portion of the model and iterations at the integration
8 
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Fig. 1. Representative periodic bicrystal structure with variation in 𝑥1 direction.

Fig. 2. Equilibrium profiles of 𝜂 and 𝜃 plotted along 𝑥1 direction. Results with increasing number of finite elements are shown together with the analytic
solution. Zoomed in views on the lower-right corners reveal the small differences.

point level. The communication between them is handled through the MGIS:fenics library (Helfer et al., 2020), which we modified
and extended for our purposes. The details of the implementation including the weak forms, update of state variables and some
numerical considerations are presented in Appendix C. The system of equations is solved with a monolithic approach, where -in two
dimensions- each node has 4 degrees of freedom: order parameter 𝜂, Cosserat microrotation 𝜃 and 2 displacements (𝑢1, 𝑢2). A semi-
mplicit time discretization is used and the resulting nonlinear system of equations is solved using the Newton–Raphson procedure
cf. Appendix C for details). Enforcing constraint (9) allows us to identify the lattice orientation with Cosserat microrotation

̄
𝜣,

hich has only one non-zero component in two-dimensions, the in-plane rotation 𝜃. It is measured with respect to the fixed global
oordinate system given in Fig. 1. The constitutive equations are applied in the local material frame. A feature of the coupled model
s that the continuous and evolving lattice orientation field 𝜃 is used to rotate between global and the material coordinate system.

3.1. Equilibrium profiles

Fig. 1 shows the two-dimensional periodic bicrystal structure used in most of the examples. There are two grains with 15◦ of
misorientation, and the opposing surfaces along 𝑥1 and 𝑥2 directions are assumed periodic. Each grain has a width of 10 μm in 𝑥1
direction, and a height of 2 μm in 𝑥2 direction. However, due to periodic boundaries, the solution field is constant along 𝑥2, so
the length along 𝑥2 is only for visualization purposes. The displacements are set to

̄
𝒖 =

̄
𝟎 unless stated otherwise. In the absence

of displacements, when the constraint ×

̄
𝒆e ≡ 0 is satisfied by using a sufficiently high Cosserat penalty parameter 𝜇c, the coupled

model should reproduce the equilibrium profiles for 𝜂 and 𝜃 at grain boundaries obtained from the asymptotic solution given in
Appendix A for pure the HMP phase field. We validate this with the model parameters given in Table 1.

Second order triangular elements with reduced integration are used. Along 𝑥1, we performed a mesh convergence study using
250, 500 and 1000 blocks consisting of two triangular finite elements. Since the solution is invariant in 𝑥2 direction, only one block
is used in this direction. The initialization of the solution variables is crucial to achieve initial convergence in the Newton–Raphson
iterations. The orientation field 𝜃 is initialized by using a hyperbolic tangent in the form of (B.9) with 𝑐 = 20. Using such a smooth
function instead of a step function improves the convergence behavior. To ensure that the coupling function 𝑔(𝜂) is not singular
nitially [it becomes singular at 𝑔(𝜂 = 1), cf. Eq. (48)], the order parameter 𝜂 is initialized to a constant value of 𝜂0 = 0.99. Finally,
n the undeformed state, in order to make sure that there is no initial elastic strain, we need to set ×𝑒∗(𝑡 = 0) = −𝜃(𝑡 = 0) as shown
n Eq. (39).

We let the fields evolve using time increment size 𝛥𝑡 = 0.1 s until 𝑡 = 10 s, at which the system reaches equilibrium. The
resulting profiles are shown in Fig. 2 for different levels of discretization. With 1000 blocks we obtained excellent agreement with
he analytical solution. Even with 250 blocks, the difference is minimal to the naked eye. The grain boundary width is about 0.4 μm,
hich is in an acceptable range for diffuse grain boundary models.
9 
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Fig. 3. Equilibrium profiles 𝜃 plotted at 𝑡 = 10 s along 𝑥1 direction for varying Cosserat penalty parameter 𝜇c (left), where stars represent − ×𝑒∗. Change of
orientation in each grain with time (right).

Fig. 4. Skew part of the elastic strain ×𝑒e (left) and stress ×𝜎 plotted at 𝑡 = 100 s along 𝑥1 direction for varying Cosserat penalty parameter 𝜇c.

For the results in Fig. 2, we have used 𝜇c = 750GPa which was sufficiently high to satisfy the constraint ×

̄
𝒆e ≡ 0. Next, we examine

what happens if smaller or larger values of 𝜇c are used. Without displacement and slip, the only component of the skew part of
stress is given by

×𝜎 = 2𝜇c ×𝑒e = 2𝜇c(−×𝑒∗ − 𝜃), (56)

which is initialized to zero. When 𝜇c is high, in order to satisfy balance Eq. (13), ×𝑒e is forced to be small. If 𝜇c is smaller, we would
expect that ×𝑒e, thus the difference between ×𝑒∗ and 𝜃 grows. The evolution of ×𝑒∗ is governed by

𝑔(𝜂)𝜏∗
×
�̇�∗ = ×𝜎 , (57)

which is hindered in the bulk of the grains due to the singular function 𝑔(𝜂). Therefore, in the case of smaller 𝜇c, 𝜃 should evolve away
rom −×𝑒∗, meaning that in our bicrystal example the two grains should rotate towards each other to minimize energy. This hypothesis

is confirmed in Fig. 3, where for 𝜇c = 1MPa the grains quickly rotate towards each other until they have the same orientation. Note
that this is not the same 𝜃 relaxation mechanism observed in the pure HMP or KWC phase field models. The difference can be
seen for cases 𝜇c = 1.5 and 7.5 MPa, in which grains rotate a bit but then stop rotating, when they reach equilibrium at some
misorientation. This rotation decreases as 𝜇c increases, and it is not noticeable for 𝜇c = 750GPa, where 𝜃 remains close to −×𝑒∗.

Fig. 4 shows the difference between −×𝑒∗ and 𝜃, or, equivalently, the skew part of elastic strain ×𝑒e, for larger 𝜇c. At 𝜇c = 750GPa,
×e is indeed negligible, and becomes smaller if 𝜇c is increased further. In fact, ×𝑒e appears to be inversely proportional to 𝜇c. Another
bservation is that the value of ×𝑒e is many orders of magnitude smaller inside the grain boundary as compared to the bulk, even
ffectively zero for 𝜇c > 750GPa. This is in agreement with Eq. (57), as ×𝑒∗ evolves a lot faster inside the grain boundary and is

able to match −𝜃. Fig. 4 also shows the skew part of stress ×𝜎, which is the driving force for ×𝑒∗ evolution. Although 𝜇c changes
ignificantly, the stress ×𝜎 = 2𝜇c ×𝑒e is relatively similar for all cases, since 𝜇c and ×𝑒e change proportionally. The non-zero stress inside
he grains shows that even with very high 𝜇c,

×𝑒∗ will change in time and, as a result, the orientation field 𝜃 will change. However,
hanks to 𝑔(𝜂) slowing down the ×𝑒∗ evolution, this rotation remains negligible, i.e., ≈ 10−10 (see Fig. 5), in the simulation time of
00 s.
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Fig. 5. Eigenrotation ×𝑒∗ at different times (left) and various localization functions at 𝑡 = 100 s (right) plotted along 𝑥1 direction. For the localizing functions
52) the following parameters are used 𝜇p = 109, 𝛽p = 102, 𝜖 = 0.5 and 𝐶∗ =

√

10.

The evolution of ×𝑒∗ plays a central role for the equilibrium profile. It is also significant for the grain boundary migration dynamics,
which is discussed in Section 3.4. Therefore, it is important understand how its evolution is localized to the grain boundaries
in Eq. (57), and how the model parameters affect it. Fig. 5 shows the change of ×𝑒∗ in time with 𝜇c = 750GPa for two different
inverse mobility parameters 𝜏𝜂 : 0.1 and 10. At 𝑡 = 0, ×𝑒∗ is initialized to zero in the outer grain. For 𝑡 = 0.1 the value of ×𝑒∗ is different
by several orders of magnitude for the two cases. As time passes, the eigenrotation keeps increasing in both cases, which is caused
by the skew-symmetric stress shown in Fig. 4. Further, for 𝜏𝜂 = 10, unlike 𝜏𝜂 = 0.1, the eigenrotation is not constant inside the bulk.

his difference is due to our localizing singular function 𝑔(𝜂) in (57). When 𝜏𝜂 is increased, 𝜂 evolves slower, from its initial value
f 0.99, meaning 𝑔(𝜂) is not as large as 𝑔(1) initially. Thus, when 𝜂 evolves slowly towards 1, 𝑔(𝜂) fails to prevent the ×𝑒∗ evolution
nside the grains. Therefore, 𝜏𝜂 should be chosen sufficiently small such as 𝜏𝜂 = 0.1. Another option is to initialize 𝜂 closer to 1,
.e. 0.9999, which however makes the initial convergence harder. Looking at Eq. (57), the effect of 𝜏∗ on

×
�̇�∗ is clear: the rate of ×𝑒∗

is inversely proportional to 𝜏∗. This is observed in Fig. 5 when 𝜏∗ = 0.001 is used instead of 𝜏∗ = 1. Consequently, using a larger 𝜏∗
eems beneficial for obtaining the equilibrium profile, however this has a negative effect on grain boundary mobility as discussed
n Section 3.4.

Another important factor for ×𝑒∗ evolution is the function that localizes it to grain boundaries. As mentioned in the previous sec-
tion, the KWC-CCP coupled model is presented with different localizing functions, shown in (52), throughout the development (Ask
et al., 2018a, 2019, 2020). In our model, we use the singular coupling function 𝑔(𝜂), which is the cornerstone of the HMP phase
field model (Henry et al., 2012; Staublin et al., 2022), instead. These different localizing functions are plotted and compared in
Fig. 5. Note that the 𝑔(𝜂) shown actually has a finite value of 1012 inside the grains. This is because we use a predefined cut-off
alue of 0.9999 to calculate 𝑔 and 𝑔′ during numerical simulations (see Appendix C), which improves numerical stability and the

convergence behavior of the model significantly. Similarly, Ask et al. (2020) have used a smoother and less strict exponential form
ompared to previous hyperbolic tangent forms in Ask et al. (2018a, 2019). The t anh(|∇𝜂|) form has a wider distribution around
he grain boundary, which is not ideal for localization. The t anh(|∇𝜃|) form has a similar distribution compared to 𝑔(𝜂), but takes
ery large values inside the grains. In our simulations we have observed that t anh forms result in peaks of ×𝑒e near grain boundaries,
hile the function 𝑔(𝜂) provides a good balance between smoothness and localization; moreover, we can control its value inside the
rains using the cut-off value.

3.2. Triple-junction test

In this section we perform the so called triple-junction test with the geometry shown in Fig. 6. The three grains have different
orientations with the corresponding misorientations at the grain boundaries given by 𝛥𝜃1, 𝛥𝜃2 and 𝛥𝜃3. The orientations are held
constant by applying Dirichlet boundary conditions on 𝜂 and 𝜃. Under these conditions, the triple junction moves to an equilibrium
point and stops. The angles of the intersection at the equilibrium are given by Herring’s force balance (Herring, 1951), which
simplifies to Young’s Law for isotropic grain boundaries

𝛾1
sin(𝛼1)

=
𝛾2

sin(𝛼2)
=

𝛾3
sin(𝛼3)

, (58)

where 𝛾𝑖 are grain boundary energies and 𝛼𝑖 are dihedral angles. We test the proposed coupled model by using different
misorientations with parameters in Table 1, to see if correct dihedral angles according to (58) are obtained. While this test has
een already performed in previous work (Henry et al., 2012; Staublin et al., 2022) for the original HMP orientation phase field,
e use a different potential 𝑉 (𝜂) and the orientation evolution is governed by Cosserat mechanics.

The geometry is divided into 100 × 100 blocks where each block contains four second order triangular finite elements with
educed integration. The simulations are continued until time-independent solutions are obtained. The triple junction angles from
11 
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Fig. 6. Triple junction test geometry and the dihedral angles at the junction.

Table 2
Equilibrium triple-junction angles obtained from finite element simulations and Herring’s equation.

Misorientation GB energy (in J/m2) FE angles (Herring)

𝛥𝜃1 𝛥𝜃2 𝛥𝜃3 𝛾1 𝛾2 𝛾3 𝛼1 𝛼2 𝛼3
5◦ 5◦ 10◦ 0.2435 0.2435 0.3914 143.6◦ (143.5◦ ) 143.6◦ (143.5◦ ) 72.8◦ (73.0◦ )
7.5◦ 7.5◦ 15◦ 0.3235 0.3235 0.5018 141.0◦ (140.9◦ ) 141.0◦ (140.9◦ ) 78.0◦ (78.2◦ )
10◦ 10◦ 20◦ 0.3914 0.3914 0.5883 138.8◦ (138.7◦ ) 138.8◦ (138.7◦ ) 82.4◦ (82.6◦ )
20◦ 20◦ 40◦ 0.5883 0.5883 0.8038 132.2◦ (133.1◦ ) 132.2◦ (133.1◦ ) 95.6◦ (93.8◦ )
30◦ 30◦ 60◦ 0.7154 0.7154 0.9146 130.1◦ (129.7◦ ) 130.1◦ (129.7◦ ) 99.8◦ (100.6◦ )
20◦ 15◦ 5◦ 0.5883 0.5018 0.2435 80.4◦ (81.8◦ ) 122.7◦ (122.4◦ ) 156.9◦ (155.8◦ )
10◦ 5◦ 15◦ 0.3914 0.2435 0.5018 130.6◦ (130.3◦ ) 151.6◦ (151.7◦ ) 77.8◦ (78.0◦ )

Fig. 7. Order parameter contours at equilibrium for the triple junction problem with different misorientations 𝛥𝜃1∕𝛥𝜃2∕𝛥𝜃3. From left to right: 30◦ /30◦ /60◦ ,
5◦ /5◦ /10◦ , 10◦ /5◦ /15◦ and 20◦ /15◦ /5◦ .

Young’s Law (58) and the angles from finite element results are compared in Table 2. The grain boundary energies used in (58)
are found from 1D grain boundary simulations for the given discretization. The angles are measured along the lines of minimum 𝜂,
i.e., the center of the grain boundary.

As seen in Table 2, the agreement is very good. Fig. 7 shows the 𝜂 fields after equilibrium is reached, where the equilibrium
positions are clearly different. Note that the GB energies at misorientations higher than 30◦ in Table 2 are not physically realistic,
since we are assuming a simple monotonically increasing curve in Fig. A.19. However, this has no effect for our purpose of comparing
the numerical dihedral angles with the analytical solution in Eq. (58). With these we confirm that the mechanics coupled phase
field model is working as intended.

3.3. Elastic shear loading

In this section we test the behavior of the model under mechanical loading. The same periodic bicrystal structure as in Section 3.1
is used with 1000 blocks of second order triangular elements with reduced integration along 𝑥 direction. The loading is applied by
1

12 
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Fig. 8. Stress profile before and after simple shear loading for isotropic elasticity, where the dotted line shows analytic solution (left). Cosserat rotation and
attice rotation (right).

imposing a mean displacement field with periodic fluctuations as explained in Appendix B. The total displacement 𝒖 is given by,

𝒖 = 𝑩∼ ⋅ 𝒙 + 𝒗 (59)

where the tensor 𝑩∼ is defined as,

𝑩∼ =
⎡

⎢

⎢

⎣

0 𝐵12 0
𝐵21 0 0
0 0 0

⎤

⎥

⎥

⎦

(60)

for shear loading with 𝐵21 = 0.001 and 𝐵12 = 0. The periodic fluctuation 𝒗 is fixed at the corners. The loading is applied until 𝑡 = 10 s
with 𝛥𝑡 = 0.1 s. In order to compare our numerical results we assume that the material is elastic, since it is possible to find analytic
solution for this problem. We consider two test cases, namely isotropic and cubic elasticity.

3.3.1. Isotropic elasticity
For the case of isotropic elasticity, the model parameters given in Table 1 are used except for the elastic constants, for which

we assume Young’s modulus 𝐸 = 120GPa and Poisson’s ratio as 𝜈 = 0.3. Before applying the loading, we first initialize the order
parameter and orientation field similar to Section 3.1 and evolve these fields until reaching an equilibrium. However, unlike the
first example, the displacement degree of freedom is not restricted, i.e.

̄
𝒖 ≢ 0. The obtained fields 𝜂, 𝜃, ×

̄
𝒆∗ and

̄
𝒖 are used as initial

onditions in the loading stage. When
̄
𝒖 is not fixed, we have an initial symmetric stress distribution at 𝑡 = 0 as seen in Fig. 8, where

𝝈∼
𝑠 = 𝑬

≈
s ∶ 𝜺∼

e, in addition to the skew-symmetric stress ×

̄
𝝈. This initial symmetric stress will be referred to as a residual stress from

ere on. The reason for this residual stress is the tendency of the grains to rotate towards each other. In the HMP or KWC orientation
phase field models, one of the evolution mechanisms to minimize free energy is to reduce misorientation by the rotation of grains.
This rotation can be suppressed by using a varying mobility function such as (52) or (53). In the coupled model, the magnitude
of the driving force for this rotation is given by ×

̄
𝝈 as shown in Fig. 4. Hence, when displacements are free in Fig. 1, the outer

rain rotates counter-clockwise and the inner grain rotates clockwise. Thus, in order to satisfy continuity at the grain boundaries,
oth grains must be strained, which we observe as the residual stress in Fig. 8. The residual stress is zero in the vicinity of grain
oundaries, since it is relaxed quickly according to (38) by the evolution of ×

̄
𝒆∗. Since the magnitude of residual stress is related to

he driving force for grain rotation, it is smaller for higher misorientations, and for grain boundaries that are further away. In our
xample it is quite small, approximately 0.125 MPa, and it is magnified in Fig. 8 for clarity.

For the isotropic case, the stress distribution after loading should be the same in both grains, since there is no orientation
dependence. The analytic solution is straightforward and given by the only non-zero component 𝜎𝑠12 = 46.15MPa, which is shown as
dotted line in Fig. 8. The final stress from the simulation is the same as analytic solution if residual stress is excluded. On the right
of Fig. 8, the change of lattice rotation skew(∇𝑢) and Cosserat rotation 𝜃 are shown as functions of time. They are equal as desired
and change linearly as expected. The coupled model allows the continuous orientation field 𝜃 to evolve due to mechanical loading.

3.3.2. Cubic elasticity
In the case of cubic anisotropy, elastic constants are taken as 𝐶11 = 160GPa, 𝐶12 = 110GPa and 𝐶44 = 75GPa. Due to anisotropy

and the different orientations of the grains, the final stress field includes components other than shear, as shown in Fig. 9. For the
given boundary conditions, it is possible to find an analytic solution as explained in Appendix B. The analytic results are plotted
with markers on top of the numerical solution in Fig. 9, showing excellent agreement. Note that, similar to the isotropic case, we
ave small residual stresses after initializing the order parameter and orientation field. Fig. 9 (right) again shows the lattice and

Cosserat rotations together, but this time they are different at each grain due to anisotropy. As expected, for high Cosserat penalty
parameter (𝜇 ) values, the Cosserat rotation 𝜃 represents the lattice rotation

[

skew(∇𝑢)
]

.
c
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Fig. 9. Stress profiles at 𝑡 = 10 after simple shear loading for cubic anisotropy, where stars show the analytic solution (left). Cosserat rotation and lattice rotation
for grains with 0◦ (𝜃min) and 15◦ (𝜃max) orientation (right).

Fig. 10. Profiles of 𝜂 and 𝜃 at different times when SSD energy multiplier function is 𝜙(𝜂) = 𝜂, and inner grain has stored SSD density of 𝜌 = 1015 m−2.

3.4. Grain boundary migration due to stored dislocations

In this section the mechanism of grain boundary migration driven by statistically stored dislocations is discussed. During plastic
deformation of a polycrystal, SSDs are most likely generated non-uniformly, which causes stored energy gradients. In the free energy
22), assuming single slip system for simplicity, stored energy of dislocations is given by the term 𝜙(𝜂) 𝜆2𝜇

e𝑏2𝜌, which can cause an
nergy gradient depending on the distribution of 𝜌(

̄
𝒙). Moreover, for the evolution of the phase field, due to the term 𝜙(𝜂), this

results in the driving force 𝑓𝜂 = 𝜙,𝜂(𝜂)
𝜆
2𝜇

e𝑏2𝜌. We test this mechanism using the same periodic bicrystal example in Fig. 1. The
SSD density 𝜌0 is initialized as 1015 m−2 in the inner grain, resembling cold worked copper (Rollett et al., 2017) and as zero in the
outer grain. The shear modulus 𝜇e is given by 𝐶44 = 75GPa for cubic elasticity, the Burgers vector for pure copper is 𝑏 = 0.2556nm
and 𝜆 = 0.3. The mobility constant for ×

̄
𝒆∗ is taken as 𝜏∗ = 0.01 and, to counter the increased mobility, the cut-off of 𝑔(𝜂) taken as

1 − 10−5). The rest of the parameters are given in Table 1. The same mesh as in previous example is used , but displacements
̄
𝒖 are

set to zero. The solution fields are initialized with the equilibrium values from Section 3.1.
We first used 𝜙(𝜂) = 𝜂 following Abrivard et al. (2012) and Ask et al. (2018a), which does not work for the HMP phase field

coupled model as seen in Fig. 10. While the grain boundary moves towards the grain with stored SSDs, the initial orientation of
he inner grain is not preserved. This is a consequence of the way Abrivard et al. (2012) formulated 𝜙(𝜂); from Eq. (55) the order

parameter 𝜂 stabilizes at a value 𝜂 < 1 given by

𝜂eq = 1 −
𝜙,𝜂

𝜆
2𝜇

e𝑏2𝜌

𝑓0𝛼
with 𝜙,𝜂 = 1, (61)

which results in 𝜂eq ≈ 0.944 for the given parameters, as seen in Fig. 10. This is incompatible with the HMP model, since it relies
on the singular function 𝑔(𝜂) to localize and distinguish between grain boundaries and bulk of grains, and 𝜂 must be close to 1 for
14 
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Fig. 11. Different possible forms of the multiplier function 𝜙(𝜂) for the SSD energy and their derivatives 𝜙′(𝜂).

Fig. 12. Grain boundary position in time for different forms of the multiplier function 𝜙(𝜂) for the SSD energy (left), and order parameter 𝜂 profile for each at
= 200 s (right).

𝑔(𝜂) to be singular. Therefore, we propose a modified 𝜙(𝜂), which preserves 𝜂eq = 1 even if SSDs are present. Looking at (61), this
is possible if

𝜙,𝜂(1) = 0 and 𝜙(𝜂) > 0 for 0 < 𝜂 < 1, (62)

where the second condition ensures the positivity of energy although it is not mandatory. Several polynomial forms satisfying these
conditions are shown in Fig. 11 along with their derivatives, representing the driving force on the order parameter.

Fig. 12 shows the motion of the grain boundary for each of the polynomials in Fig. 11. The left figure shows the position of the
grain boundary in time; clearly, the velocity differs depending on the form of 𝜙(𝜂) with 𝜙3 and 𝜙4 being very similar. The right
figure shows the 𝜂 profiles at 𝑡 = 200 s, where we can see that the 𝜂eq = 1 condition is satisfied for all 𝜙(𝜂). The forms of 𝜙3 and 𝜙4
are chosen to be as similar as possible to 𝜙0 = 𝜂. In our tests, comparing the different forms of 𝜙 using the KWC-Cosserat coupled
model, we have observed that 𝜙3 and 𝜙4 provide velocities comparable to 𝜙0 = 𝜂, while 𝜙1 and 𝜙2 significantly reduce velocity. The
velocity appears to be proportional to the value of 𝜙′(𝜂) at 𝜂 > 0.5 shown in Fig. 11 (right). This observation is consistent with the
fact that the grain boundary is represented with order parameter values 0.5 < 𝜂 < 1 for the given misorientation as seen in Fig. 2.
Therefore, in the remaining examples we use the 4th order polynomial form 𝜙4(𝜂), which is most similar to 𝜙0 = 𝜂.

Fig. 13 shows the profiles of 𝜂, 𝜃, ×

̄
𝒆∗, 𝜌 and ×𝜎 at different times. At 𝑡 = 0, the inner grain is initialized with 𝜌0 = 1015, as seen

in Fig. 13(c), while 𝜂, 𝜃 and ×𝜎 have the respective equilibrium profiles. ×𝜎 is non-zero inside the grains, as discussed in Section 3.1,
showing the tendency to rotate, but is held in place by a high Cosserat penalty parameter 𝜇c. As the simulation is run, the energy
gradient due to the inhomogeneous SSD distribution drives the grain boundaries to move towards the grain with the higher energy.
In the wake of the moving grain boundary, static recovery can take place, which is a phenomenon observed in experiments (Bailey
and Hirsch, 1962). In the model this is implemented with Eq. (41) following Abrivard et al. (2012). If the recovery parameter 𝐶D
in (41) is sufficiently large, i.e. 100, full recovery occurs and 𝜌 reduces to zero in the wake of the sweeping boundary, as seen in
Fig. 13(c). While this is not realistic in general, the amount of remaining defects can be adjusted by changing 𝐶D, as shown later
n Section 3.5.
15 
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Fig. 13. Grain boundary migration snapshots at different times, where the SSD energy multiplier 𝜙4 is used with 𝜏∗ = 0.01. Profiles of phase field 𝜂 (a),
rientation 𝜃 and − ×𝑒∗ as stars (b), SSD density 𝜌 (c) and skew-stress ×𝜎 (d) are shown.

Fig. 14. Evolution of solution variables in time on a point located at 𝑥 = 6 μm in Fig. 13.

In Fig. 13(b) we see that the orientation field 𝜃 evolves with the moving grain boundary, and the reference orientation ×

̄
𝒆∗

follows the movement according to Eq. (57), ensuring that the strain free state is maintained. Moreover, the evolution of ×

̄
𝒆∗ inside

the sweeping grain boundary fully relaxes the initial skew stress ×𝜎 in the wake as seen in Fig. 13(d). Also, we see an increase of ×𝜎 in
the inner grain as the grain boundaries move closer, which shows that there is a stronger tendency to rotate as grain size decreases.
Fig. 14 shows the evolution of main fields in time at the fixed location 𝑥1 = 6 μm. The SSD density smoothly reduces to zero as
discussed by Abrivard et al. (2012), while 𝜃 and ×

̄
𝒆∗ evolve together.

The co-evolution of 𝜃 and ×

̄
𝒆∗ is crucial, and it may not be maintained depending on the value of the inverse mobility 𝜏∗. Fig. 15

(left) shows the grain boundary position in time for different 𝜏∗. It seems that above a certain threshold, the motion is disturbed and
the grain boundary velocity decreases. When 𝜏∗ is small enough, the velocity is not affected. As also observed by Ask et al. (2018a),
a good rule of thumb is to set the mobility 𝜏∗ smaller than phase field mobility; hence, we have used 𝜏∗ = 0.01 and 𝜏𝜂 = 0.1 in this
ection. Fig. 15 (right) shows ×𝜎 at 𝑡 = 150 s for different 𝜏∗. When 𝜏∗ is too large, the evolution of ×

̄
𝒆∗ lags behind 𝜃, and the skew

tress is not fully relaxed in the wake of the grain boundary. In addition, the final coalescence and the annihilation of the inner
16 
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Fig. 15. Grain boundary position in time for different 𝜏∗ (left), and skew-stress ×𝜎 profile for each at 𝑡 = 150 s (right).

grain happens slightly earlier for smaller 𝜏∗, as evidenced by small peaks in Fig. 15 (left) towards the end, and higher values of ×𝜎
in Fig. 15 (right).

3.5. Mechanical loading and migration

In this section the capability of the coupled HMP-Cosserat crystal plasticity model is explored based on a simple example, where
he specimen undergoes plastic deformation and a subsequent SSD driven grain boundary migration at elevated temperatures. As
hown in Ask et al. (2019), it is possible to illustrate this with the periodic bicrystal in Fig. 1 by applying a mean shear strain

and then holding the mean deformation to simulate a heat treatment phase. The lattice orientations, dimensions, the finite element
discretization and the boundary conditions are the same as the previous example. The material parameters given in Table 1 are used,
except 𝜇c = 75GPa and 𝐶D = 25. The former is reduced to improve the convergence, while keeping it sufficiently high to satisfy
the constraint (9). Following the considerations from the previous section, inverse mobilities are set to 𝜏∗ = 0.01 and 𝜏𝜂 = 0.1. We
ssume that a single slip system defined by

̄
𝒍1 = (1, 0),

̄
𝒏1 = (0, 1), (63)

is active. The dislocation density 𝜌 is initialized to 1011 m−2 uniformly. Similar to Section 3.3 a mean shear is applied with a final
value 𝐵12 = 0.05 and 𝐵21 = 0, which is ramped up linearly within 5 s. During loading, the recovery parameter 𝐶D is set to zero.
During the heat treatment phase the structure is evolved for 2000 s, during which 𝐶D = 25. Unlike the example in the previous
section, fluctuations

̄
𝒗 are free to evolve during the heat treatment phase.

In Fig. 16, the results of the proposed model are compared with the KWC-CCP model. While both HMP and KWC are orientation
phase field models, their GB energetics are different since HMP does not have the |∇𝜃| term as opposed to KWC free energy [see
Eqs. (22) and (49)]. To have a meaningful comparison, KWC parameters are calibrated to similarly have 0.5 J/m2 GB energy at
5◦ , and fitted for misorientations less than 15◦ as shown in Fig. A.19, with the best fit in the range 10◦ ÷ 15◦ , which matches the

misorientations in our example. In Fig. 16(a) and (b), the difference at 𝑡 = 0 in the initial profiles of 𝜂 and 𝜃 can be seen, respectively,
for the HMP-CCP and KWC-CCP models, where the latter has a slightly sharper profile. After loading at 𝑡 = 5 s, the 0◦ orientated
grains carry most of the plastic deformation due to the favorable alignment of the slip direction with the loading, resulting in a
higher SSD density. The grains rotate towards each other due to deformation, decreasing the misorientation by about 5◦ , which can
also be confirmed by the gradient of 𝑣2 in Fig. 17. Since misorientation decreases [see Fig. 16(b)], the minimum value of 𝜂 at the
GB increases [see Fig. 16(a)], adapting to the changes in the microstructure. There is no noticeable difference in the deformation
ehavior of the two models, where the results are qualitatively similar to the findings of Ask et al. (2019). During the heat treatment

phase, since there is a difference in the stored energy gradient, the grain boundary moves to reduce the energy, accompanied by the
ecovery of SSD and the change in the lattice orientation. GB velocities are clearly different, where the HMP-CCP velocity is faster
or the same inverse mobility constant. For a given stored SSD energy gradient, the GB velocity is constant as shown in Fig. 15, and

the inverse mobility 𝜏𝜂 can be adjusted to fit the velocities. The SSD density is recovered at the wake similar to previous examples,
but here it reduces to a value on the order of 1012 instead of zero, which can be controlled by adjusting 𝐶D. In Fig. 16(a) and (b)
for the KWC model, the profiles of 𝜂 and 𝜃 continue to change at the beginning of the heat treatment phase, indicating that the
phase field did not have sufficient time to relax during the 5 s loading; this is not observed for the HMP model. This only shows
that the HMP model evolves faster for the same mobility constant 𝜏𝜂 , and this behavior can be changed by adjusting 𝜏𝜂 for both
models. Fig. 16 (d) shows the evolution of the critical resolved shear stress at both grains, which almost reaches saturation in the
◦ grain. Fig. 17 shows the orientation evolution for the HMP-CCP model on the deformed specimen. It can be seen that, because of

the strong coupling, the change in 𝜃 also evolves the displacement as the GB migrates. However, the periodicity of 𝑣2 at the domain
boundaries (see Fig. 17) imposes a very strong over-constraint, such that, when it is combined with the changes of 𝑣 at the GBs,
2

17 



I.T. Tandogan et al. International Journal of Plasticity 185 (2025) 104201 
Fig. 16. Plastic deformation and subsequent grain boundary migration for the periodic bicrystal in Fig. 1. The sample is loaded in shear for 5 s, then heat
treated until 𝑡 = 2005 s using the HMP-CCP model and the KWC-CCP model as a reference. Order parameter 𝜂 (a), orientation 𝜃 (b), SSD density 𝜌 (c) and slip
resistance 𝑅𝛼 (for HMP-CCP) (d) are shown. The evolution of the slip resistance in (d) coincides for both models.

Fig. 17. Orientation contour evolution on the deformed specimen. From top to bottom: initial condition, after loading and after heat treatment. The line plot
shows the evolution of fluctuation 𝑣2.
18 
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the grains have to be sheared further to satisfy continuity. This non-intuitive deformation causes further generation of SSD, and
bulk rotation as seen in Fig. 16 at 𝑡 = 2005 s, which is a result of the simplified loading conditions.

4. Conclusion

We have presented a new multi-physics model coupling HMP type orientation phase field with the Cosserat crystal plasticity
ramework for evolution of grain boundary microstructure. The formulation of the model is inspired by the work of Ask et al.

(2018a), which couples Cosserat mechanics to the KWC orientation phase field. The proposed model offers several improvements.
The main feature of the proposed model is the ability of the lattice orientation to evolve concurrently with both grain boundary

migration and mechanical deformation. Firstly, the curvature driven grain boundary evolution mechanism is inherited from the HMP
orientation phase field model, which was validated with a triple-junction test. Secondly, the lattice orientation is represented by the
Cosserat micro-rotation through a constraint on the constitutive level. This makes its evolution by mechanical deformation consistent,
which is tested with the elastic deformation of a periodic bicrystal. Similar to the KWC based coupled model, an eigen-deformation
measure is introduced so that the stresses in the undeformed state are zero.

Another driving force for grain boundary migration is the non-homogeneous distribution of SSDs, which was incorporated into
KWC with an SSD energy term (Abrivard et al., 2012). However, this enhancement alters the equilibrium state of the order parameter
in an, at least in the HMP context, undesired way. We propose a modified form that preserves the same mechanism without altering
the phase field equilibrium.

The capabilities of the strongly coupled framework were illustrated using the example of a periodic bicrystal, which is heat
treated subsequent to plastic deformation. The deformation resulted in non-uniform changes in the lattice orientation of the grains
nd, similarly, non-uniform SSD generation. The SSDs create a driving force for the migration of GBs during heat treatment, leading

to a partial or full recovery of dislocation density in the wake of the moving boundary.
By construction, the HMP model removes non-physical long range interactions between the grain boundaries that exist in the

KWC model due to the |∇𝜃| term in the free energy. Moreover, the employed singular coupling function 𝑔(𝜂) can be modified in
order to obtain the desired misorientation dependence of the grain boundary energy without changing the variational form of the
model; examples are Read-Shockley type or inclination dependent anisotropic energies.

While the HMP based model is a mathematically improved formulation compared to KWC, it is still highly non-linear and thus
computationally heavy. Therefore, in this work we have shown the fundamental capabilities of the proposed model with simple
numerical examples. In future work, inclination dependent grain boundaries, complex, plastic deformation induced microstructure
evolution and sub-grain formation in polycrystals will be explored.
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Appendix A. Model parameters

At this initial stage of the model development, we are conducting qualitative tests and thus have not exactly fitted the parameters
to experimental data. Nevertheless, the parameters are selected to be in an acceptable range for pure copper. For the mechanical
art of the model, the elasticity constants for isotropic elasticity and cubic anisotropy are available in the literature [cf. Ledbetter

and Naimon, 1974], and the values from Gérard et al. (2009) and Bacroix and Brenner (2012) are adapted for the plasticity and
ardening. The Cosserat couple modulus 𝜇c is a penalty parameter preventing differences between Cosserat microrotation ̇

̄
𝜣 and

lattice rotation ×

̄
𝝎. Hence, it needs to be large enough, ideally some orders higher than elastic shear modulus 𝜇e. The parameters of

the orientation phase field model 𝛼, 𝜈 and 𝜇 should be selected carefully so that the grain bulk and boundary are clearly distinguished
while staying in the limitations of the model. These parameters determine the width, energy and the mobility of grain boundaries. For
a grain boundary without inclination dependence, the 1D equilibrium profiles of order parameter 𝜂 and orientation 𝜃 can be obtained
with asymptotic analysis as outlined in Henry et al. (2012) and Staublin et al. (2022). However, we first need to non-dimensionalize
our free energy functional.
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A length scale 𝐿 with unit m is defined, where (𝑥, 𝑦, 𝑧) = (𝑥, 𝑦, 𝑧)∕𝐿 are dimensionless coordinates. With 𝐿 we can non-
imensionalize the following parameters and differential operator

𝛼 = 𝛼 , 𝜈 = 𝜈∕𝐿, 𝜇 = 𝜇∕𝐿, ∇ = 𝐿∇, 𝐶𝐴 = 𝐶A∕𝐿, 𝐶∗ = 𝐶∗∕𝐿. (A.1)

The mechanical parameters are non-dimensionalized using 𝑓0 with unit Pa as

𝑬
≈

s
= 𝑬

≈
s∕𝑓0, 𝜇c = 𝜇c∕𝑓0, 𝜆 = 𝜆, 𝜇e = 𝜇e∕𝑓0, 𝑟𝛼 = 𝑟𝛼 . (A.2)

Finally, the non-dimensional free energy functional is given by

𝜓 =
𝜓
𝑓0

=
[

𝛼 𝑉 (𝜂) + 𝜈2

2
|∇𝜂|

2
+ 𝜇2𝑔(𝜂)|∇𝜃|

2
]

+ 1
2
𝜺∼
e ∶ 𝑬

≈

s
∶ 𝜺∼

e + 2𝜇c ×𝑒e 2 + 𝜙(𝜂)
𝑁
∑

𝛼=1

𝜆
2
𝜇e𝑟2𝛼 .

(A.3)

The dimensionless total energy can be calculated by

𝛹 =
𝜓

𝑓0𝐿3
= ∫𝛺

𝜓 𝑑𝛺 , (A.4)

where 𝑑𝛺 = 𝐿3𝑑 𝛺. By defining a time scale 𝑡0 with 𝑡 = 𝑡∕𝑡0, we can non-dimensionalize mobility constants

𝜏𝜂 =
𝜏𝜂
𝑓0𝑡0

, 𝜏∗ =
𝜏∗
𝑓0𝑡0

. (A.5)

The equilibrium profile between two semi-infinite grains with different lattice orientations can be found by considering Eqs. (44)
and (46) without dislocations and setting the rates to zero,

0 = 𝜈2
𝜕2𝜂
𝜕 𝑥2 − 𝛼 𝑉,𝜂 + 𝜇2𝑔,𝜂

( 𝜕 𝜃
𝜕 𝑥

)2
, (A.6)

0 = 𝜕
𝜕 𝑥 ⋅

[

𝑔(𝜂) 𝜕 𝜃
𝜕 𝑥

]

. (A.7)

These equations are solved by dividing the space into an inner region with rapid change of variables and an outer region where
change is small. Then integration constants are found by equating the inner and outer region solutions at the intersection point.
The field variables in the inner region are expanded in terms of a small constant 𝜖 as

𝜂 = 𝜂0 + 𝜖
𝜕 𝜂
𝜕 𝑥 + 𝜖2

𝜕2𝜂
𝜕 𝑥2 +⋯ ,

𝜃 = 𝜃0 + 𝜖 𝜕 𝜃
𝜕 𝑥 + 𝜖2 𝜕

2𝜃
𝜕 𝑥2 +⋯ .

(A.8)

Here, we only provide the final forms and the reader is referred to Henry et al. (2012) and Staublin et al. (2022) for details. Leading
rder solutions are given by

𝜕 𝜃0
𝜕 𝑧 = 𝐴

𝑔(𝜂0)
, (A.9)

𝜕 𝜂0
𝜕 𝑧 = ±

√

2
𝜈

√

𝛼 𝑉 (𝜂0) − 𝐴2𝜇2

𝑔(𝜂0)
, (A.10)

where 𝑧 = 𝑥∕𝜖 is a stretched coordinate, 𝐴 is a constant and (A.10) changes sign at the middle of the grain boundary. The
imensionless grain boundary energy �̃�gb is given by

�̃�gb(𝛥𝜃) = 2
√

2𝜈 ∫

1

𝜂0min

𝛼 𝑉 (𝜂0)
√

𝛼 𝑉 (𝜂0) − 𝐴2𝜇2

𝑔(𝜂0)

𝑑 𝜂 , (A.11)

and the true grain boundary energy is
𝛾gb = 𝑓0𝐿𝜖 ̃𝛾gb. (A.12)

To solve the preceding equations, one can start with an 𝜂0 slightly smaller than 1, pick a value for the constant 𝐴 and then solve
A.10) using finite differences. Then, using 𝜂0 one can similarly calculate 𝜃0 with (A.9), which gives a certain misorientation 𝛥𝜃
epending on chosen value of 𝐴. Finally, �̃�gb(𝛥𝜃) for the given misorientation can be found with (A.11).

Fig. A.18 shows an example of equilibrium profiles for different misorientations obtained from asymptotic analysis with
arameters 𝛼 = 150, 𝜈 = 1, 𝜇 = 2.5∕𝜋 and 𝜖 = 1. When 𝜈 is kept constant, increasing 𝛼 results in a thinner grain boundary,
nd increasing 𝜇 gives a deeper profile of 𝜂0. It is important to have a sufficiently large 𝜇 so that the 𝜂 profile is not too shallow for

small misorientations.
For the mesoscale, an appropriate length scale is 𝐿 = 1 μm. A property of the HMP and KWC phase field models is the existence

of two grain boundary dimensions for 𝜂 and 𝜃, which are about 1 μm and 0.4 μm, respectively, (see Fig. A.18) in our examples. In
the case of instantaneous response during mechanical loading the latter is more important since it determines the local stress, and
20 
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Fig. A.18. Equilibrium profiles of order parameter and orientation field for given misorientation found from asymptotic analysis with parameters 𝛼 = 150, 𝜈 = 1,
𝜇 = 2.5∕𝜋 and 𝜖 = 1.

Fig. A.19. Grain boundary energies at increasing misorientations calibrated to an approximate 0.5 J/m2 at 15◦ misorientation for pure Copper. The curves
orrespond to: the solid line and star markers using 𝑔(𝜂), the cross markers where 𝑔(𝜂) is replaced with 𝑔(𝜂) + 𝑐 log(1 − 𝜂) + 𝐶0 to generate a Read-Shockley type
rain boundary energy, and the dashed line for the KWC model. The values of 𝑓0 are 87 kJ/m3, 313.6 kJ/m3 and 5765.4 kJ/m3, respectively. The parameters
or KWC in Eq. (49) are 𝜈 = 0.09 μm, 𝑠 = 0.4 μm and 𝜖 = 0.8 μm.

it is in acceptable range for diffuse grain boundary models. It is also possible to reduce the difference by changing the free energy
contributions (Ghiglione et al., 2024).

Using Eqs. (A.11) and (A.12), the model parameters can be calibrated to fit experimental grain boundary energy data. In
his work, we do not pursue a rigorous fitting. Instead, we assume an average grain boundary energy of 0.5 J/m2 at 15 degrees
isorientation for copper, which is in an acceptable range (Tschopp et al., 2015). Using Eq. (A.12), this gives 𝑓0 = 87 kJ/m3. The

resulting grain boundary energy up to 80 degrees of misorientation is shown in Fig. A.19 with black solid line. The markers show
the energy calculated numerically with the finite element method, and there is excellent agreement with the asymptotic analysis.

A feature of the HMP-type orientation phase field is that, if the singularity at 𝑔(1) is preserved, arbitrary functions can be added to
𝑔(𝜂) to modify the dependency of grain boundary energy on misorientation without changing the free energy or evolution equations;
or example, inclination dependence (Henry et al., 2012) can be incorporated. Similarly, a Read-Shockley type grain boundary energy
21 
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can be obtained by making a small modification to the singular function 𝑔(𝜂), i.e.,

𝑔(𝜂) = 7𝜂3 − 6𝜂4
(1 − 𝜂)3 + 𝑐 ln(1 − 𝜂) + 𝐶0 where 𝐶0 = min

(

7𝜂3∗ − 6𝜂4∗
(1 − 𝜂∗)3

+ 𝑐 ln(1 − 𝜂∗)
)

+ 0.01, (A.13)

and 𝜂∗ take values in range [0,1] (see Staublin et al., 2022 for details). The resulting curve with 𝑐 = 80 is plotted in Fig. A.19.
For comparison the KWC orientation phase field model’s grain boundary energy, numerically calculated from Eq. (49), is also

plotted in Fig. A.19. It is fitted to have 0.5 J/m2 at 15◦ , and similar energies compared to HMP (with 𝑐 = 0) between 10◦–15◦ , which
is the range of angles used in Section 3.5.

The proposed coupled Cosserat model and the pure HMP phase field have the same equilibrium condition, meaning the leading
order solutions from the asymptotic analysis of HMP can be used for both models to obtain equilibrium profiles and the grain
boundary energy. However, the next to leading order solution of grain boundary mobility presented in Staublin et al. (2022) is
no longer valid for the coupled Cosserat model, because the orientation update is based on balance Eq. (45) and constraint (39),
instead of relaxation dynamics. In addition, the coupled model has an additional driving force for grain boundaries due to stored
dislocations. Still, as discussed in Ask et al. (2020), it is possible to estimate the grain boundary mobility by relying on simple
numerical test cases.

Appendix B. Analytic solution for elastic shear loading of the periodic bicrystal

Here a summary of the equations of the analytic solution to elastic shear loading of a periodic bicrystal with cubic anisotropy is
presented. For the derivation and details please refer to Ask et al. (2018a).

Loading is applied by imposing a mean displacement field with periodic fluctuations. The total displacement 𝒖 is given by

𝒖 = 𝑩∼ ⋅ 𝒙 + 𝒗, (B.1)

where 𝒙 is spatial coordinates, 𝒗 is the periodic fluctuation vector and 𝑩∼ ⋅ 𝒙 is mean displacement field. The tensor 𝑩∼ is defined as

𝑩∼ =
⎡

⎢

⎢

⎣

0 𝐵12 0
𝐵21 0 0
0 0 0

⎤

⎥

⎥

⎦

(B.2)

for shear loading. For simple shear either 𝐵12 or 𝐵21 is zero. Assuming 𝐵12 = 0, displacements are given by,
𝑢1 =𝑣1(𝑥1),

𝑢2 =𝐵21𝑥1 + 𝑣2(𝑥1),

𝑢3 =0.

(B.3)

Assuming small deformations and plane strain conditions, the only non-zero strains are

𝜀11 =
𝜕 𝑣1
𝜕 𝑥1

, 𝜀12 = 𝜀21 =
1
2

(

𝐵21 +
𝜕 𝑣2
𝜕 𝑥1

)

. (B.4)

Assuming cubic elasticity, the stiffness tensor and the compliance tensor can be defined with three independent constants each: 𝐶11,
𝐶12 and 𝐶44, or 𝑆11, 𝑆12 and 𝑆44, respectively. We have the following relations between them:

𝑆11 =
𝐶11 + 𝐶12

(𝐶11 + 2𝐶12)(𝐶11 − 𝐶12)
, 𝑆12 =

−𝐶12
(𝐶11 + 2𝐶12)(𝐶11 − 𝐶12)

, 𝑆44 =
1
𝐶44

. (B.5)

Assume that we have a varying orientation field 𝜃 along 𝑥1 direction. The constitutive relation is applied at the material frame
nd then 𝜃 is used to obtain strains in the global frame in terms of stresses. Then enforcing constraints (B.4) results in a system of

equations with unknown stresses 𝜎12, 𝜎11 and 𝜎22. After solving the system, 𝜎33 is found from plane strain conditions. We get

𝜎12 =
1
2𝐹

𝐵21, 𝜎11 = 𝐸 𝜎12, 𝜎22 = −𝐵
𝐴
𝜎11 −

𝐶
𝐴
𝜎12, 𝜎33 = −𝑆12

𝑆11
(𝜎11 + 𝜎22), (B.6)

where the orientation dependent coefficients are given by

𝐸 =
⟨𝐶∕𝐴⟩

1 − ⟨𝐵∕𝐴⟩
, 𝐹 =

⟨

−𝐶 + 𝐶 𝐸
2

− 𝐶 𝐸 𝐵 + 𝐶2

2𝐴
+𝐷

⟩

. (B.7)

In this case ⟨⋅⟩ represent the average and
𝐴 = 𝑆11 + 𝑆𝐷 + 𝑆𝐴 sin2(2𝜃), 𝐵 = 𝑆12 + 𝑆𝐷 − 𝑆𝐴 sin2(2𝜃),

𝐶 = 𝑆𝐴 sin(4𝜃), 𝐷 = 𝑆𝐵 + 𝑆𝐴 cos(4𝜃),

𝑆𝐴 = 1
2

(

−𝑆11 + 𝑆12 +
1
2
𝑆44

)

, 𝑆𝐵 = 1
2

(

𝑆11 − 𝑆12 +
1
2
𝑆44

)

, 𝑆𝐷 = −
𝑆2
12
𝑆11

.

(B.8)

An orientation field in the form

𝜃 = 𝜋
24

[

t anh(𝑐[𝑥 + 𝑥shift]) + 1] (B.9)

gives a change from 0 to 15 degrees around position 𝑥shift with varying sharpness determined by the parameter 𝑐. Fig. B.20 shows
the stresses obtained using elasticity parameters in Table 1 and Eq. (B.9).
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Fig. B.20. Stress profiles across the grain boundary with changing orientation with different sharpness.

Appendix C. 2D numerical implementation in FEniCS

The model is implemented in the FEniCS 2019 open-source finite element library (Alnaes et al., 2015) and the MFront code
generator for the material models (Helfer et al., 2015). After the simplifications in Section 2.3, for a single slip system, the strong
orm equations are given by

𝜏𝜂 �̇� = 𝑓0𝜈
2∇2𝜂 − 𝑓0

[

𝛼 𝑉,𝜂 + 𝜇2𝑔,𝜂|∇𝜃|2
]

− 𝜙,𝜂𝜓𝜌, (C.1)

0 = 𝑓0∇ ⋅
[

𝜇2𝑔(𝜂)∇𝜃
]

+ ×𝜎 , (C.2)

̄
𝟎 = ∇ ⋅ 𝝈∼ , (C.3)

where

𝑉 (𝜂) = 1
2
(1 − 𝜂)2, 𝑔(𝜂) = 7𝜂3 − 6𝜂4

(1 − 𝜂)3 , 𝜙(𝜂) = −2𝜂4 + 3𝜂3 − 𝜂2 + 𝜂 , 𝜓𝜌 =
𝜆
2
𝜇e𝑏2𝜌. (C.4)

The weak form is obtained by multiplying the strong forms with test functions 𝑤𝜂 , 𝑤𝜃 , ̄
𝒘𝑢 and integrating. We get,

∫𝛺

{

𝑓0𝜈
2∇𝜂 ⋅ ∇𝑤𝜂 +

(

𝜏𝜂 �̇� + 𝑓0

[

𝛼 𝑉,𝜂 + 𝜇2𝑔,𝜂 |∇𝜃|
2
]

+ 𝜙,𝜂𝜓𝜌

)

𝑤𝜂

}

𝑑 𝑉 = ∫𝜕 𝛺
𝑓0𝜈

2∇𝜂 ⋅
̄
𝒏 𝑤𝜂𝑑 𝑆 , (C.5)

∫𝛺

{

𝑓0𝜇
2𝑔(𝜂)∇𝜃 ⋅ ∇𝑤𝜃 −

×𝜎 𝑤𝜃
}

𝑑 𝑉 = ∫𝜕 𝛺
𝑓0𝜇

2𝑔(𝜂)∇𝜃 ⋅
̄
𝒏 𝑤𝜃𝑑 𝑆 , (C.6)

∫𝛺

{

𝝈∼
𝑠(
̄
𝒖) ∶ 𝜺∼( ̄

𝒘𝑢) + 2 ×

̄
𝝈(
̄
𝒖) ⋅ ×

̄
𝝎(
̄
𝒘𝑢)

}

= ∫𝜕 𝛺
(𝝈∼ ⋅

̄
𝒏) ⋅

̄
𝒘𝑢𝑑 𝑆 . (C.7)

The equations are discretized in time implicitly, except for the highlighted term in (C.5) where the value in the beginning of the
ncrement is used. The state variables are updated with the following equations

𝛥×

̄
𝒆∗ =

𝛥𝑡2𝜇c
𝜏∗𝑔(𝜂)

(×
̄
𝒆 − ×

̄
𝒆∗𝑛 −

×

̄
𝒆slip)

1 + 𝛥𝑡2𝜇c
𝜏∗𝑔(𝜂)

, (C.8)

𝛥𝜌recovery =

{

−𝜌𝐶D t anh(𝐶2
A|∇𝜃𝑛|

2)𝛥𝜂 if 𝛥𝜂 > 0,
0 if 𝛥𝜂 ≤ 0,

(C.9)

The system of nonlinear equations are solved monolithically using the Newton–Raphson procedure. During the iterations, due
to the singular nature of 𝑔(𝜂), the residual from Eq. (C.6) is significantly larger than the residual from (C.5). Therefore, in order
to solve these equations monolithically, the former is normalized with a coefficient of 10−10. Moreover, to increase the numerical
stability, the singular function 𝑔(𝜂) is modified with a cut-off value as follows

𝑔(𝜂) → 𝑔(min(𝜂 , 𝜂 cutoff)), (C.10)

where 𝜂 cutoff was taken as (1 − 10−4) or (1 − 10−5).

Data availability

Data will be made available on request.
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