001     1034976
005     20250414120452.0
024 7 _ |a 10.1007/s13218-024-00871-8
|2 doi
024 7 _ |a 0933-1875
|2 ISSN
024 7 _ |a 1610-1987
|2 ISSN
024 7 _ |a 10.34734/FZJ-2025-00082
|2 datacite_doi
024 7 _ |a WOS:001347282900001
|2 WOS
037 _ _ |a FZJ-2025-00082
041 _ _ |a English
082 _ _ |a 004
100 1 _ |a Klusch, Matthias
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Quantum Artificial Intelligence: A Brief Survey
260 _ _ |a Berlin
|c 2024
|b Springer
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1742896606_24365
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Quantum Artificial Intelligence (QAI) is the intersection of quantum computing and AI, a technological synergy with expected significant benefits for both. In this paper, we provide a brief overview of what has been achieved in QAI so far and point to some open questions for future research. In particular, we summarize some major key findings on the feasability and the potential of using quantum computing for solving computationally hard problems in various subfields of AI, and vice versa, the leveraging of AI methods for building and operating quantum computing devices.
536 _ _ |a 5215 - Towards Quantum and Neuromorphic Computing Functionalities (POF4-521)
|0 G:(DE-HGF)POF4-5215
|c POF4-521
|f POF IV
|x 0
536 _ _ |a Verbundprojekt, Quantum Artificial Intelligence for the Automotive Industry (Q(AI)2) - Teilvorhaben: Implementierung, Benchmarking, und Management (13N15584)
|0 G:(BMBF)13N15584
|c 13N15584
|x 1
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Lässig, Jörg
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Müssig, Daniel
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Macaluso, Antonio
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Wilhelm, Frank K.
|0 P:(DE-Juel1)184630
|b 4
|e Corresponding author
773 _ _ |a 10.1007/s13218-024-00871-8
|g Vol. 38, no. 4, p. 257 - 276
|0 PERI:(DE-600)2537719-X
|n 4
|p 257 - 276
|t Künstliche Intelligenz
|v 38
|y 2024
|x 0933-1875
856 4 _ |u https://juser.fz-juelich.de/record/1034976/files/s13218-024-00871-8.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:1034976
|p openaire
|p open_access
|p OpenAPC_DEAL
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)184630
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-521
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Quantum Materials
|9 G:(DE-HGF)POF4-5215
|x 0
915 p c |a APC keys set
|0 PC:(DE-HGF)0000
|2 APC
915 p c |a DEAL: Springer Nature 2020
|0 PC:(DE-HGF)0113
|2 APC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-18
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b KUNSTL INTELL : 2022
|d 2024-12-18
915 _ _ |a WoS
|0 StatID:(DE-HGF)0112
|2 StatID
|b Emerging Sources Citation Index
|d 2024-12-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-18
915 _ _ |a DEAL Springer
|0 StatID:(DE-HGF)3002
|2 StatID
|d 2024-12-18
|w ger
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2024-12-18
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-12-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-18
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)PGI-12-20200716
|k PGI-12
|l Quantum Computing Analytics
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)PGI-12-20200716
980 _ _ |a APC
980 1 _ |a APC
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21