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Abstract
Quantum Artificial Intelligence (QAI) is the intersection of quantum computing and AI, a technological synergy with 
expected significant benefits for both. In this paper, we provide a brief overview of what has been achieved in QAI so far and 
point to some open questions for future research. In particular, we summarize some major key findings on the feasability and 
the potential of using quantum computing for solving computationally hard problems in various subfields of AI, and vice 
versa, the leveraging of AI methods for building and operating quantum computing devices.
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1 Introduction

It is known that quantum computing can simulate and even 
go beyond classical computing in terms of computational 
speedup in theory [3, 130, 153] for quite some time. But 
initial versions of real quantum computing hardware and 
frameworks for quantum programming became available 

only in about the past decade. Even the Quantum Internet 
of networked quantum computers and with secure quantum 
communication channels, long time considered as mere 
science fiction, is on its way with early stage prototypes 
available [26, 33, 59]. On the other hand, artificial intel-
ligence (AI) [156] is commonly considered as one of the 
most disruptive key technologies of our time for industry 
and business, our private and social life, notwithstanding 
the challenges of its future, trustworthy and controlled use 
for the benefit of the people affected by it.

Quantum Artificial Intelligence (QAI, Quantum AI) is the 
intersection of both technologies (cf. Fig. 1) and concerned 
with the investigation of the feasability and the potential 
of leveraging quantum computing for AI, and vice versa, 
AI for quantum computing [152]. While quantum machine 
learning [16, 17] is currently the most popular application 
[47, 53, 117, 162], quantum AI goes much beyond covering 
more subfields of AI [73, 156], such as quantum reason-
ing [21, 34, 36], quantum automated planning and schedul-
ing (QPS), quantum natural language processing (QNLP), 
quantum computer vision (QCV), and quantum agents and 
multi-agent systems (QMAS). Notably, each of these QAI 
subfields covers research and development in both direc-
tions; for example, QML refers to both the use of quan-
tum computing for machine learning and vice versa. In this 
respect, it would be premature to follow the current hype 
cycle around QML.
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Though QAI still is a nascent and inherently interdisci-
plinary research field, remarkable progress has been already 
made in the recent past. It has been shown, in part also 
experimentally on real quantum computers of the current 
NISQ (Noisy Intermediate-Scale Quantum) era, that tailored 
QAI algorithms could indeed make a positive difference in 
solving certain computationally hard problems such as for 
combinatorial optimization in AI applications compared to 
classical solutions. So far, the potential quantum utility of 
direct quantum or hybrid quantum-classical methods of QAI 
is under investigation for applications in diverse domains 
such as manufacturing, automated driving, transport and 
logistics, energy management, healthcare, finance, aero-
space, climate and earth sciences, and pharmaceutical and 
chemical industries. In this regard, quantum AI use cases 
are concerned with, for example, portfolio optimization in 
finance [150], traffic management [193], capacitive vehi-
cle routing [62, 82], safe navigation of self-driving vehicles 
[163], satellite network constellation [178] and mission plan-
ning [147], energy network management [22, 124], job-shop 
scheduling in manufacturing [158], weather simulation and 
forecasting [68, 83, 132, 170] and simulation of materials 
and chemicals for drug discovery [91, 111, 142] and material 
design [10, 37]. On the other hand, there is active research 
on the use of QAI algorithms that leverage AI methods, in 
particular from machine learning, to address challenges of 
the building and operation of quantum computing devices. 
These research activities in both directions of QAI are in 
part also fueled and influenced by the made progress and 
still ongoing race in building ever more powerful quantum 
computing devices and network, and vice versa.

Currently, the global market value of QAI applications on 
future quantum computing devices in general is estimated 
to be about eighteen billion USD by 2030 [148], and three 
to five billion USD for the automotive industry by 2035 
in particular [25, 169]. This emphasizes that quantum AI 
has graduated from being a mere academic niche to a topic 
with a potential future beyond the current hype. However, it 
remains unclear when QAI methods and their applications, 
including those mentioned above, can be used and com-
mercialized at large in practice, as this would require way 
more quantum computational resources and fault tolerance 
than current quantum computers have but future computing 
devices could provide [93].

Remarkably, as in AI, there are also discussions related to 
QAI on ethical issues of quantum computing such as those 
concerned with non-transparency of information processing 
in a “quantum-box”, or clashes of quantum privacy with 
security demands [139], as well as on the role of quantum 
computing in neuroscience (quantum neuroscience). The 
latter includes speculative multi-scale simulations of the 
human brain [168] and explanation of some consciousness-
related brain functions [90], though not of how the human 
brain produces thoughts [108], as well as a better representa-
tion of and inference means for certain psychological models 
in cognitive science (quantum cognition) [140]. One should 
keep in mind, that these concerns apply in similar form to 
classical stochastic algorithms as well.

In this paper, we provide a first overview of selected 
methods, use cases and insights from research in the inter-
disciplinary field of QAI for both its directions, without any 
claim to completeness. In Sect. 2, we informally recall the 
basics of quantum computing from the computer science 
perspective only in very brief; readers who are roughly 
familiar with them can easily skip this section. Section 3 
then summarizes selected key findings of research on quan-
tum computing for AI in several subfields of QAI. The same 
is done for research on AI for quantum computing in Sect. 4 
before we conclude in Sect. 5.

2  Quantum Computing in a Nutshell

Quantum computing [130, 153] harnesses the principles of 
quantum mechanics [149] to process information and per-
form computations, potentially surpassing the capabilities of 
classical computers. There are two primary models of quan-
tum computing. The first is gate-based quantum computing, 
which functions analogously to classical computing by using 
quantum gates to manipulate quantum information. This 
model facilitates the design of complex quantum circuits, 
which are the quantum counterparts to Boolean circuits in 
classical computation.

Fig. 1  Quantum AI (QAI) as intersection of quantum computing and 
AI with subfields in relation to AI each covering both directions
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In contrast, adiabatic quantum computing [7] is based on 
the adiabatic theorem and, in principle, equivalent to quan-
tum gate-based computing [4]. In this model, the quantum 
system, which represents the search space of the given com-
putational problem, gradually evolves from an initial, simple 
quantum state to a final state that encodes the problem’s 
solution. The choice between these models depends on the 
nature of the problem being addressed and the availability 
in terms of hardware.

2.1  Gate‑Based Quantum Computing

The basic unit of information in classical information pro-
cessing is a single bit that can exist in one of two states, 
represented as the integer numbers 0 or 1. Consequently, a 
sequence of n bits can represent 2n unique values, with the 
bit register being in only one of these 2n possible states. A 
quantum bit (qubit) is the quantum analog of a bit and can 

assume the two basic states �0⟩ =
�
1

0

�
 and �1⟩ =

�
0

1

�
 . 

Qubits adhere to the principles of quantum mechanics and 
can be implemented using various physical systems, such as 
the spin states of subatomic particles, ion traps, neutral 
atoms, or superconducting circuits.

One of the intriguing properties of qubits is their ability 
to exist not just in the state �0⟩ or �1⟩ but in a superposition 
of both. An arbitrary single-qubit state can be expressed as:

where the coefficients � and � are complex numbers that 
satisfy the normalization condition |�|2 + |�|2 = 1 . A visual 
representation of a qubit is shown in Fig. 2. When building 
multi-qubit systems, an n-qubit system provides access to a 
2n-dimensional Hilbert space, where an arbitrary pure quan-
tum state is defined as

with ci ∈ ℂ and 
∑2n−1

i=0
�ci�2 = 1 . The multi-qubit basis 

s t a t e s ,  e . g . ,  �0⋯ 1⟩ = �0⟩⊗ �0⟩⊗⋯⊗ �0⟩⊗ �1⟩  , 
are tensor products of the individual qubits. The state 
��⟩ → [c0, c1,⋯ , c

N−1]
t possesses N = 2n complex ampli-

tudes, whose absolute squared values must sum to one. 
Thus, due to the principle of superposition, an n-qubit sys-
tem is capable of encoding information that scales as 2n , 
while classical systems are limited to n . A multi-qubit state 
is entangled if the states of its component qubits cannot be 
described independently of each other as a tensor product. 
Quantum entanglement allows for non-local correlations 
such that operating on one component qubit changes the 
states of others instantaneously and independent of their 

(1)��⟩ = ��0⟩ + ��1⟩ =
�
�

�

�
,

(2)��⟩ = c0�0⋯ 0⟩ + c1�0⋯ 1⟩ +⋯ + c2n−1�1⋯ 1⟩,

separate locations; a prominent example are the entangled 
2-qubit Bell states.

In order for computation to be possible, there must be 
a way to manipulate quantum states. This is achieved by 
operators that describe the evolution of a closed quantum 
system with unitary. In order to preserve the normalitation, 
these have to be unitary, and therefore reversible, that is, 
for a quantum operator U must hold that U†U = I . In fact, 
any operation on qubits can be described as a matrix opera-
tor. Notice that this is fundamentally different from classical 
computing, where operations are not required to be unitary 
and not even reversible.

Another crucial difference between classical and quan-
tum computation is how information can be accessed after 
processing. In classical computing, the state of each bit 
is well-defined and can be directly observed at any time, 
revealing whether it is in a state of 0 or 1. This observation 
does not alter the state of the bits, allowing us to access 
the exact information stored in the system without any 
disturbance. However, as mentioned above, in quantum 
systems the state of a qubit is generally a superposition 
of multiple states, meaning it can exist in a combination 
of both 0 and 1 simultaneously. To extract information 
from a quantum system, one must measure an observ-
able physical quantity—which from now on we assume to 
be the binary number associated with the computational 
basis states. This measurement process forces the quan-
tum system to collapse from its superposition into one 

Fig. 2  Representation of a quantum state ��⟩ on the Bloch sphere. 
The state is described by the angles � and � , where � defines the polar 
angle from the z-axis and � defines the azimuthal angle in the xy-
plane. The Bloch sphere provides a geometric representation of the 
pure states of a qubit, with �0⟩ and �1⟩ corresponding to the poles of 
the sphere
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of the possible definite states. Crucially, this collapse is 
probabilistic, meaning that the outcome of the measure-
ment cannot be precisely predicted but rather is governed 
by the amplitudes of the quantum state. Furthermore, the 
measurement fundamentally alters the state of the system, 
making it impossible to retrieve the original superposition 
state after the measurement is performed. This is a key 
distinction from classical systems, where observation is 
non-intrusive and reversible.

For the quantum state given by Eq. (1), the measurement 
will yield one of the basis states �0⟩ or �1⟩ with classical 
output 0 or 1, respectively The probability of observing �0⟩ 
is |�|2 , and the probability of observing �1⟩ is |�|2 , with the 
total probability summing to 1 ( |�|2 + |�|2 = 1 ). After meas-
urement, the qubit will be found in the state corresponding 
to the measurement outcome. For the state described in Eq. 
(2), the measurement outcome will be one of the 2n pos-
sible basis states. The probability of observing a particu-
lar multi-qubit state ��⟩ = �b1b2 ⋯ bn⟩ is given by |cindex|2 , 
where index represents the binary number corresponding 
to the combination b1b2 … b

n
 , and the total probability is 1 

( 
∑2n−1

i=0
�ci�2 = 1 ). After the measurement, the system col-

lapses to the state observed, with the measurement outcome 
determining the final state of the system. Quantum state 
measurement is the only non-unitary (irreversible) opera-
tion in an ideal quantum computer, and according to the 
no-cloning theorem of quantum computing, in contrast to 
classical computing, it is not possible to generate an identi-
cal copy of an arbitrary quantum state. Note that the squar-
ing of the amplitude over probabilities allows for negative 
and arbitrarily complex-valued amplitudes. These account 
for destructive interference which can be used in quantum 
alogortihms to supress undesired solution. This interference 
is a crucial distinction of quantum algorithms relative to 
classical stocahstic algorithms. Note also, that the need for 
the state vector to retain its norm (from which we infered 
that operations have to be unitary) can be understood as con-
servation of total probability.

The aforementioned basic concepts of quantum computa-
tion are direct consequences of the postulates of quantum 
mechanics and provide a foundation for exploring how these 
principles can be applied in practice through quantum cir-
cuits, which function as the quantum counterpart of classical 
algorithms.

A quantum circuit typically begins with qubits in a 
defined initial state, followed by the application of quantum 
gates that transform these states according to the intended 
computation. The circuit concludes with a measurement, 
which extracts classical information by collapsing the qubits 
into definite classical states. Quantum circuit diagrams serve 
as a useful tool for visualizing quantum algorithms. Indi-
vidual qubits are represented as horizontal lines, and the 
sequence of operations, also known as gates, is indicated 

by their position along these lines. An example of a simple 
quantum circuit is depicted in Fig. 3.

Similar to classical computing there is a universal set of 
quantum gates, and quantum computing can simulate clas-
sical computing, while the converse is also true [57]. How-
ever, quantum computing solutions are in the complexity 
class of bounded-error quantum polynomial time for prob-
lems solvable in polynomial time by probabilistic quantum 
Turing machine with bounded error (error probability less 
or equal than 1/4). This class includes not only that of P but 
also interleaves with NP and PSPACE. Among other, that 
motivates research on quantum-supported problem-solving 
methods beyond those with an already proven significant 
speed-up compared to their classical counterparts such as 
quantum prime factorisation [160] and quantum search 
[138].

2.2  Adiabatic Quantum Computing

As an alternative, adiabatic quantum computing (AQC) [7] 
performs problem-solving by gradually evolving a quantum 
system toward its lowest energy state as a solution. Accord-
ing to the adiabatic theorem, this gradual evolution allows 
the system to remain in its ground state throughout the pro-
cess, theoretically enabling it to perform any quantum com-
putation. This process is designed to encode the solution to 
a given computational problem into this ground state, and 
AQC theoretically possesses the capability to perform any 
quantum computation, rendering it a universal approach 
to quantum computing. However, this theoretical potential 
relies on ideal conditions, including a perfectly isolated sys-
tem, the ability to exert extremely precise control, and suf-
ficiently long computation times to mitigate errors. Note that 
the total time for this evolution is controlled by the inverse 
of the energy gap, i.e., the difference between the two low-
est energy eigenvalues during the sytem evolution, and an 
efficient adiabatic quantum algorithm is characterized by this 
gap shrinking only polynomially with problem size.

A more practical application of AQC principles is Quan-
tum Annealing (QA) [87], which involves guiding a quan-
tum system towards a low-energy state but is specifically 
focused on finding approximate solutions to combinatorial 

Fig. 3  A simple quantum circuit demonstrating the combination of 
basic quantum gates. The circuit starts with a qubit in the �0⟩ state. 
The Hadamard gate ( H ) is applied first, creating a superposition of 
�0⟩ and �1⟩ . Following this, a Pauli-X gate ( X ) is applied, flipping the 
qubit’s state. The circuit concludes with a measurement, represented 
by the meter symbol, which collapses the qubit’s state into either �0⟩ 
or �1⟩ , producing a classical output
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optimization problems. Consequently, QA does not fully 
meet the criteria for universal quantum computing, making 
it more suitable for specific problem-solving scenarios rather 
than serving as a versatile computational tool akin to AQC.

In quantum annealing, computational problems are for-
mulated as Quadratic Unconstrained Binary Optimization 
(QUBO) problems, mathematically described as follows:

where x is a vector of binary variables xi (with xi ∈ {0, 1} ), 
and Qij are the coefficients of the quadratic terms. The goal is 
to find the binary vector x that minimizes the value of Q(x).

In practice, while QA does not guarantee the correct solu-
tion, it remains a powerful tool for addressing classically 
intractable problems. Notably, the QUBO formulation in Eq. 
(3) is NP-complete, implying that any NP-hard problem can 
be mapped into a QUBO formulation with only a polyno-
mial overhead. This suggests that rather than viewing direct 
QA-based quantum algorithms as merely an alternative to 
classical or direct gate-based quantum computing for solving 
QUBO problems, it should be considered a tool that lever-
ages quantum mechanics to provide potential advantages in 
specific cases, which warrant further exploration in practice.

2.3  Hybrid Quantum‑Classical Computation

While several theoretical results demonstrate that direct 
(gate-based or AQC-based) quantum algorithms can solve 
complex problems more efficiently than classical alterna-
tives in terms of worst-case time complexity [14, 51, 160], 
these results invariably assume the existence of quantum 
computers with a very low logical error rates. This assump-
tion necessitates the use of quantum error correction to 
safeguard quantum information against errors and noise 
that may arise during computation. Quantum computers 
are inherently sensitive to external disturbances, hardware 
imperfections, and spurious decoherence, all of which can 
introduce errors.

In contrast, NISQ devices, which represent the current 
state of quantum hardware, operate without full fault tol-
erance and have limited computational capabilities. Such 
machines are not yet powerful enough to outperform classi-
cal computers and it is an open challenge to find clear quan-
daum advantage in NISQ.

Consequently, the concept of hybrid quantum-classical 
computation has been proposed to exploit near-term quan-
tum devices and benefit from the anticipated performance 
boost offered by quantum technologies. Specifically, in 
the domain of gate-based quantum computing, variational 
quantum algorithms (VQAs) have been developed to address 
optimization problems by utilizing both classical and 

(3)minimize Q(x) =
∑

i,j

Qijxixj

quantum resources. The quantum component, often referred 
to as a variational quantum circuit (VQC) or parameterized 
quantum circuit (PQC), plays a critical role in this hybrid 
approach.

Within this framework, the classical input data x is ini-
tially pre-processed on a classical device to determine a nor-
malized input quantum state for the PQC. Following this 
pre-processing, a VQA is executed, which comprises two 
sets of quantum gates: US and U(�).

Quantum operations US represent the data encoding (or 
embedding) step and consist of a sequence of quantum gates 
designed to generate a quantum state that represents the clas-
sical input x as accurately as possible. The structure of US 
is task-dependent, varying according to the specific compu-
tational problem being addressed. For instance, in combi-
natorial optimization problems, the encoding step involves 
generating a quantum state that represents the classical 
search space of the original problem. A prominent exam-
ple is the Quantum Approximate Optimization Algorithm 
(QAOA) [61], a well-known variational quantum algorithm 
for solving QUBO problems. In QAOA, the initial step of 
data encoding consists of generating a quantum state where 
the basis states encode all possible binary strings that might 
be solutions to the problem. Conversely, in the context of 
machine learning, the encoding step involves mapping the 
set of features into a quantum state. This mapping can be 
achieved through various methods, such as using the basis 
states, amplitude encoding, or other encoding strategies. 
Each of these approaches has its own advantages and disad-
vantages. For a more detailed discussion of these methods 
and their implications, see [183].

Subsequently, a sequence of parameterized quantum gates 
U(�) , referred to as the Ansatz, is applied with randomly 
initialized parameters � . After the execution of the PQC, 
which includes the quantum gates US and U(�) , the result of 
the measurement is classically post-processed to obtain a 
classical output f (x) . This output is then utilized to evaluate 
a task-dependent cost function. Based on this evaluation, the 
parameters of the PQC are updated using gradient descent 
or another optimization algorithm. This process is repeated 
iteratively in a closed loop between the classical and quan-
tum hardware until the optimization converges or the desired 
performance is achieved.

The strength of this approach lies in the adaptability of 
the architecture, which allows for customization through 
learning of the gate parameters in the PQC of the VQA to 
address various use cases. The entire procedure is depicted 
in Fig. 4.

Quantum annealing can also be utilized within a hybrid 
framework. In this case, the approach involves designing 
hybrid quantum-classical algorithms that iteratively gener-
ate large QUBO problems, which can then be solved using 
quantum annealing. Here, only a specific computational 



262 KI - Künstliche Intelligenz (2024) 38:257–276

component is delegated to quantum annealing, while the 
rest of the computation remains classical.

3  Quantum Computing for AI

One direction of quantum AI refers to the use of quantum 
computing for solving computational problems in AI. As 
mentioned above, this concerns all subfields of AI such as 
automated planning, machine learning, computer vision, 
natural language processing, and multi-agent systems, for 
each of which we provide selected results and insights in this 
section. The other direction of QAI, namely, AI for quantum 
computing is covered in Sect. 4.

3.1  Quantum Machine Learning

Quantum machine learning (QML) seeks to harness the 
principles of quantum computing to perform traditional 
machine learning (ML) tasks [16, 17, 20]. Although theo-
retical research indicates that fault-tolerant quantum comput-
ing could accelerate the training of various ML algorithms 
providing a computational advantage in terms of worst-case 
time complexity [113, 114, 151], current quantum hardware 
is not yet powerful enough to implement these algorithms 
effectively. Consequently, in QML the focus has shifted 
towards leveraging hybrid quantum-classical computation 
with VQAs (cf. Sect. 2.3), which aims to exploit gate-based 
near-term quantum devices to develop innovative models 

and potentially achieve performance gains from quantum 
technologies.

The hybrid QML approach with the use of VQAs (cf. 
Sect. 2.3) shares significant similarities with the training of 
classical neural networks (NNs), notably in their reliance 
on parameterized models, gradient-based optimization tech-
niques, and structured layers for approximating complex 
functions. As such, this common ground has paved the way 
for the development of quantum neural networks (QNNs), 
which essentially are the use of PQCs for machine learn-
ing applications. QNNs are widely used in both supervised 
and reinforcement learning. In quantum supervised learning 
[112], these algorithms typically involve fitting a param-
eterized function to a training dataset, that can represent 
complex hypothesis functions that classical models might 
struggle with. Therefore, the use of QNNs in supervised 
learning seeks to identify problem classes that are intrac-
table for classical approaches from a learning perspective, 
rather than expedite the training process in terms of wors-
time complexity.

Similarly, QNNs can be effectively utilized in quantum 
reinforcement learning (QRL) [54, 122]. In reinforcement 
learning (RL), an agent interacts with an environment to 
maximize cumulative rewards by learning optimal poli-
cies [72]. Hybrid quantum-classical approaches of RL can 
employ QNNs to encode and process states and actions 
within the environment, leveraging a potential quantum 
advantage in representing and exploring complex state-
action spaces. QNNs can be used to approximate value 

Fig. 4  A Hybrid Quantum-Classical Optimization Workflow (adapted 
from [115]). The diagram illustrates a hybrid quantum-classical opti-
mization process. The quantum part involves three main stages: State 
Preparation: An initial quantum state is prepared using the unitary 
operator US . Computation: The prepared state is processed by a 
parameterized quantum circuit U(Θ) to search for the optimal solu-
tion x based on the parameters Θ . Measurement: The quantum state 
is measured to obtain the expectation value ⟨M⟩ . The classical part 

includes three steps: Post-Processing: The measured expectation 
value ⟨M⟩ is processed to extract the classical variable x . Evalua-
tion: The function f (x) is evaluated based on the classical variable 
x . Update: The parameters Θ are updated using classical optimiza-
tion algorithms to improve the search in the next iteration. The pro-
cess iterates, with the updated parameters Θi+1 being fed back into the 
quantum circuit, forming a closed-loop optimization cycle between 
the quantum and classical computations
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functions or policy distributions, while classical compo-
nents handle the optimization of these quantum parameters 
through iterative updates. This hybrid strategy can enhance 
the learning efficiency and representational power of RL 
algorithms, potentially solving problems that are challenging 
for classical methods alone.

Recently, a quantum deep reinforcement learning method 
has been developed and experimentally evaluated on noisy 
gate-based quantum simulation for the use case of safe navi-
gation by self-driving cars that do not need a quantum device 
on-board during testing but training only [163]. The QRL 
method leverages the model capacity of quantum neural 
networks, only requires a few dozen noisy qubits and relies 
on hybrid quantum-classical computations to be effective. 
The experimental evaluation provided evidence in favor of 
quantum utility in terms of faster and more stable training 
with fewer parameters compared to the classical counterpart. 
These results suggest that existing noisy quantum computing 
devices with a few tens of qubits might soon become viable 
alternatives to overcome the challenges faced by classical 
methods in, for example, enhancing autonomous systems 
and optimizing large distribution networks through quan-
tum-supported reinforcement learning.

The focus on using quantum algorithms for unsuper-
vised learning primarily involves fault-tolerant quantum 
approaches that can theoretically provide a computational 
speedup in terms of worst-time complexity. Key advance-
ments include the introduction of quantum algorithms that 
utilize amplification techniques in clustering problems [5, 
55], the proposal of a quantum k-means and k-nearest cen-
troid algorithms [88, 110], and recent efforts focused on 
graph sparsification achieving by leveraging superposition 
access to classically stored graph weights [12].

3.2  Quantum Planning and Scheduling

Quantum automated planning and scheduling (QPS) 
research focuses on quantum-supported means of auto-
mated planning (QP) and scheduling (QS) in AI, and vice 
versa. Automated planning methods in AI can be divided 
into online and offline planning each with certainty or under 
uncertainty. Offline planning is decoupled from the subse-
quent execution of produced plans and gets no feedback 
about it during planning, while online planning is inter-
leaved with a controlled action execution in a closed-loop 
manner. In many real-world applications, action planning 
under uncertainty is required that allows for actions with 
non-deterministic effects and incomplete initial states caused 
by only partial observability of the environment such as in 
partially observable Markov decision processes (POMDP). 
Depending on the chosen technique of planning with cer-
tainty or under uncertainty, a plan can take the form of, for 
example, a finite sequence of primitive actions, a conditional 

action plan, or an action policy on belief states with maximal 
expected utility. For a more comprehensive introduction to 
automated planning, we refer the interested reader to, for 
example, [66].

In any case, automated planning methods in AI are known 
to be computationally expensive, such as classical (state-
space or planning graph-based) action planning already 
being PSPACE-complete, while belief states in POMDPs 
and non-determinism as well as interactive POMDPs make it 
even worse exponentially. Nevertheless, automated planning 
of symbolic AI is considered more explainable in general 
than deep learning-based POMDP solutions, and approxi-
mated online POMDP planning methods are successfully 
used in many practical applications such as robot navigation. 
The fundamental question therefore arises as to whether, to 
what extent and under which conditions quantum-supported 
AI planning, particularly for (interactive) POMDPs, is fea-
sible and may lead to a significant reduction of planning 
time and space compared to the classical counterparts. As 
of today, not much is known in this regard yet.

For example, a classical POMDP models an agent act-
ing in a partially observable stochastic environment. A 
first quantum-based POMDP model was proposed in [15], 
which is intended to generalize POMDPs and has the same 
complexity for the strategy (plan) existence problem, i.e. is 
PSPACE-hard for a polynomial (undecidable for infinite) 
time horizon. In this model, actions and observation process 
are represented by a super-operator on quantum-encoded 
environment states assumed by the agent. However, it is 
unclear to what extent this model is useful for quantum-
supported planning and learning agents in POMDPs in con-
crete terms.

In [44], a quantum MDP model (QMDP) is defined 
through a potential energy function of the quantum system 
under consideration. It is shown how model-based learning 
by approximate value iteration for POMDPs can be applied 
to such a model. However, how QMDPs are modeled when 
the energy function is unknown, and whether this model 
may serve as a basis for quantum-supported approximated 
interactive POMDP planning is not known either. Another 
open question is to what extent an adaptation of hybrid 
neuro-symbolic methods for learning-assisted planning in 
POMDPs [46, 141] for quantum computing would be feasi-
ble and beneficial.

In [30], a quantum-supported method for optimal path 
planning in robot navigation is presented that leverages 
Grover’s quantum search in a classical tree-search pro-
cedure. It is simulated for gate-based quantum computa-
tion and shown theoretically to always provide a quantum 
speedup up to that of the Grover algorithm [70]. Earlier 
work [127] proposes a QP method that adapts and benefits 
from standard quantum search for planning in MDPs using 
Dynamic Programming (DP) and a heuristic for controlling 
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a discrete time quantum walk on the MDP state graph, which 
reduces the number of states visited during a DP iteration 
compared to classical.

Quantum scheduling (QS) research actually focuses on 
the use of quantum computation for solving the NP-complete 
problem of job shop scheduling (JSS) and its modern vari-
ants that allow for more flexibility (FJSS) in the context of 
Industry 4.0. Roughly, the FJSS problem is to find a feasible 
schedule that assigns constrained job operations to multi-
purpose machines with, for example, a minimal produc-
tion makespan in total. There exist many different kinds of 
variants of this problem and classical approximate solution 
methods based on genetic algorithms, artificial neural net-
works, particle swarm optimization and reinforcement learn-
ing [101, 191]. In agent-based solutions for FJSS, individual 
machines, carriers, jobs or individual operations are often 
represented by agents in a respective multi-agent system.

However, there are only very few quantum-supported 
solution methods for some variants of the FJSS problem 
yet. These QS methods are limited to quantum genetic algo-
rithms and quantum PSO, in which iterative evolutionary 
sets of suitably quantum-encoded individuals can lead to 
approximate optimal solutions, for example by means of 
quantum rotations [32, 167, 192].

In [6, 8], an iterative quantum-supported hybrid MILP 
(Mixed Integer Linear Programming)-based optimal solu-
tion of the JSS problem is decomposed in a way that is suit-
able for hybrid quantum-classical computing. The hybrid 
method solves a relaxed MILP problem of the original JSS 
problem with a classical MILP solver to find possible opti-
mal assignments of jobs to machines. This is followed by 
solving related sequencing QUBO problems that correspond 
to individual machines with a D-Wave quantum annealer to 
search for feasible schedules based on those assignments. 
The reported experimental results show a significant com-
putational time speedup of this method over the classical 
solver Gurobi for JSS problem instances comprising of up 
to 280 machines and jobs in a specific scheduling dataset.

Multi-agent reinforcement learning (MARL) is one clas-
sical solution approach for FJSS with dynamic changes of 
optimization conditions and configurations [78, 109, 135]. 
Currently, there are only very few initial, feasible approaches 
of quantum-supported MARL (QMARL) for this specific 
problem class [136, 189] but without any experimental 
analysis and concrete insights on their benefits compared to 
classical counterparts yet.

Another NP-hard problem in the AI domain of auto-
mated planning and scheduling is the bin-packing problem, 
which is to find the minimum number of bins of fixed capac-
ity required to pack a set of items of varying size without 
exceeding the bin capacities. Recently, a first QS method 
has been presented that solves this problem reformulated as 
a QUBO problem on a quantum annealer [28]. The method 

utilizes the Augmented Lagrangian method to account for 
the bin packing constraints and heuristic penalty multipliers, 
scales with increasing problem size but does not outperform 
the selected classical counterpart in runtime yet due to cur-
rent limitations of quantum annealing hardware.

It is apparent that more in-depth theoretical and experi-
mental investigations are needed on which types of compu-
tationally hard AI planning may benefit from the adoption 
of direct or hybrid quantum computation under which condi-
tions and assumptions of integration compared to classical 
solutions in general, and for which practical use cases in 
particular. Research in the other direction of QPS, that is, the 
use of AI planning and scheduling for advanced manufactur-
ing and operating quantum devices, is as relevant as the use 
of AI for the same purpose regarding classical computing 
devices but actually occurs less prominent in the literature 
(cf. Sect. 4).

3.3  Quantum Computer Vision

Quantum computer vision (QCV) research is mainly con-
cerned with the investigation of the feasability and ben-
efits of quantum-supported computer vision methods for 
the perception of intelligent agents in AI. Research in the 
other direction of QCV, that is, the usage of computer vision 
methods for advances in the building and operating quantum 
computing devices actually appears rather neglected.

The QCV subfield of QAI formed in the early 2000s 
[173] and attracted renewed attention with recent advances 
in quantum image processing. The latter requires the rep-
resentation and processing of a given digital image on a 
quantum computer, and the final conversion of the processed 
quantum image into a classical image. Quantum image rep-
resentations such as qubit lattices and normal arbitrary quan-
tum superposition states store color image information using 
amplitudes, phases, or basis quantum states [102, 107]. For 
the processing of quantum represented images, there are 
already quite a few, mostly quantum annealing-based meth-
ods available for tasks such as image recognition and clas-
sification [27, 89, 172], image synthesis [49], object tracking 
and detection [103], graph matching [159], as well as for 
motion and image segmentation [13, 174, 179].

For example, the problem of unsupervised graph-based 
image segmentation is (a) to construct a weighted undirected 
graph from a given image with set of vertices (pixels), set of 
edges (synergies between pixels), and set of weights (simi-
larity between pixels), and then (2) to find the best partition 
into disjoint subsets such that the sum of weights between 
different subsets is minimized. This NP-hard problem has 
been recently solved in [174] with a quantum-supported 
method that first reformulates segmentation as a graph-
cut optimization problem, maps it into the topology of and 
runs it on the considered quantum annealer, in this case, a 
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D-Wave Advantage, then retrieves the results of quantum 
measurement and eventually generates the segmentation 
mask from them. Despite the shared and remote access of the 
D-Wave device, comparative experimental evaluation results 
revealed that this QCV method outperformed the classical 
solver Gurobi on the same task in terms of runtime with 
only slightly sub-optimal solution quality. In this regard, it 
is particularly valuable when collecting labeled data is costly 
and speed is of essence. In [179], quantum algorithms for the 
same purpose are analyzed that allow to scale the number 
of qubits exponentially with respect to the input size to use 
current gate-based quantum computing devices.

Motion segmentation, on the other hand, aims to detect 
independent motions in two or several input images. The 
QCV method presented in [13] solves this problem refor-
mulated as a QUBO problem directly on a D-Wave quan-
tum annealer with reported on-par performance compared 
to classical solutions.

Recently, in [172], several variations of a quantum hybrid 
vision transformer were analyzed for solving an image clas-
sification problem in high-energy physics with the result of, 
again, an on-par performance compared to classical counter-
parts with a similar number of model parameters. For small-
scale medical image datasets, it has been shown in [89] that 
quantum transformer models with quantum attention layers 
may perform better than classical vision transformers for this 
purpose in terms of asymptotic run time and fewer model 
parameters.

In [49], two quantum hybrid diffusion models for image 
synthesis are presented. The first model replaces convolu-
tional ResNet layers with hybrid quantum-classical varia-
tional quantum circuits only at the vertex, while the second 
additionally does so in the second block of the encoder part. 
The experimental evaluation via simulation in PennyLane 
indicate that such models are of benefit in the sense that they 
synthesize better-quality images and converge faster with a 
lower number of parameters to train.

3.4  Quantum Natural Language Processing

Quantum natural language processing (QNLP) is concerned 
with the representation and processing of natural language 
through quantum computational means. The other direction 
of QNLP, that is the utilization of NLP means for quantum 
computing tasks remains fully unexplored yet. As summa-
rized in [71], most QNLP works leverage quantum super-
position to model uncertainties and ambiguity in language 
or entanglement to describe both composition and distribu-
tion of syntax and semantics effectively. The current QNLP 
methods are mainly developed for the NLP tasks of ques-
tion answering, text classification and translation. In [38], 
Coecke and colleagues show that QNLP is not just the quan-
tum counterpart to NLP but allows to combine linguistic 

structure and semantics or meanings in one quantum com-
putational system, in fact, represent this kind of knowledge 
in respectively composed variational quantum circuits more 
efficiently and inherently than in the classical case. The com-
mon basis of most QNLP approaches is the Categorical Dis-
tributional Compositional (DisCoCat) diagram model for 
natural language [39] with which one can encode the mean-
ing of words and phrases as quantum states and processes, 
hence as quantum circuits. In this regard, the implicit flows 
of meanings in respective diagrammatic reasoning due to 
the underlying structure are exposed rather than encoded 
in black boxes of neural transformer-based large language 
models (LLM) in classical NLP.

The potential speedup of running the DisCoCat model 
on quantum hardware was discussed first in [190], while in 
[104, 185] the potential of quantum computing techniques 
such as quantum search and quantum neural networks for 
faster training and testing of LLMs, and vice versa, is con-
ceptually discussed but not yet demonstrated in practice. 
In this context, complementary work includes quantum-
inspired approaches such as the recently reported compres-
sion of LLMs with quantum-inspired tensor networks by 
supposedly more than 80% without compromising accuracy 
[123].

However, more advanced experimental insights on and 
development of hybrid quantum-classical QNLP methods, 
in particular quantum neural networks, for NLP tasks are 
needed but limited by current NISQ quantum computing 
hardware. For example, as in QCV, the potential of quantum-
supported transformers compared to classical transformer 
neural network architectures might be worth to investigate. 
For more information on QNLP in Quantum AI, we refer the 
interested reader to, for example, [38, 71, 185]

3.5  Quantum Agents and Multi‑Agent Systems

Quantum multi-agent systems (QMAS) research mainly 
focuses on two strains: (1) development of autonomous 
agents and multi-agent systems for hybrid quantum-classi-
cal computational environments, and (2) quantum-supported 
methods for coordination and cooperation in multi-agent 
systems. In modern AI, the concept of an intelligent agent 
and multi-agent system is at the core [156, 184] and integral 
part of many agent-based scientific, industrial and commer-
cial AI applications [182]. Roughly said, in a multi-agent 
system, multiple homogeneous or heterogeneous agents 
coordinate their actions to achieve joint goals and carry 
out tasks flexibly, autonomously and interactively in com-
plex environments with cooperative or competitive settings 
depending on the considered application problem.

There are quite some tools and frameworks for the engi-
neering of autonomous agents and multi-agent systems for 
environments of classical computing [11, 19, 23, 24, 41]. 
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However, architectures and approaches to build and operate 
agents with quantum computational capabilities in AI appli-
cations to run on one or multiple networked quantum com-
puters or in hybrid quantum-classical computing environ-
ments are very rare. In fact, concepts, tools and frameworks 
for quantum multi-agent system programming based on the 
currently available quantum programming frameworks and 
quantum computational models are needed but still missing 
and topics of future research in QMAS.

Early work in this direction [92, 94] proposed a first con-
ceptual classification and architecture of quantum multi-
agent systems. More recent, a quantum modeling approach 
for reactive agents with subsumption architecture has been 
proposed and exemplified for a simple ball picking robot in 
[96]. The agent state is encoded as the superposition of the 
tensor products of a 4-qubit perception vector with a 5-qubit 
action vector, and the simple quantum control circuit for the 
robot is shown for gate-based quantum computation but not 
yet evaluated.

Research on quantum-supported means of coordination 
and cooperation in multi-agent systems is still in its infancy. 
In [128], two first quantum-supported methods for coordina-
tion in a quantum multi-agent system are presented for gate-
based quantum computing devices. These methods were 
concerned with quantum versions of Kernel-based coalition 
negotiation and a specific contract net protocol with embed-
ded auction. The used quantum coalition protocol provides 
a marginal speedup in computation and quadratic reduction 
in communication between agents compared to the classical 
counterpart, while the quantum contract net version offers 
no computational speedup but more data privacy to the bid-
ding agents.

Likewise, [31] initially discusses the potential of lever-
aging entangled quantum states for coordination in (mixed) 
multi-agent systems by means of a quantum public-goods 
protocol and quantum auctions for resource allocation. Their 
experiments on the latter indicates, for example, that the 
quantum version may provide more privacy than the clas-
sical (first price) auction but at the cost of lower economic 
efficiency.

More recently, quantum multi-agent reinforcement learn-
ing (QMARL) for adaptive coordination in collaborative 
settings for the quantum gate-based model [50, 136, 189] 
or quantum annealing [100, 129] gained some interest. For 
example, in [50] a QMARL version for centralized training 
and decentralized execution (CTDE) relies on distributed 
advantage actor-critic architecture with a quantum critic 
uniquely spread across the agents and coupling of local 
observation encoders through entangled input qubits over a 
quantum channel. That eliminates explicit sharing of local 
observations of agents and reduces classical communica-
tion overhead. Whereas in [136, 189] alternative QMARL 
versions for CTDE are proposed with a quantum critic at a 

central server and agents sending their local observations 
via a classical channel.

In any case, experimental evidence in favor of, or against 
some quantum utility compared to classical MARL methods 
is shown for simple toy domains only [50], if at all. More 
investigations in this regard are definitely required to assess 
the potential of QMARL.

One prominent class of micro-level coordination tech-
niques for multi-agent systems [133] in competitive envi-
ronments is coalition formation based on cooperative game 
theory. In general, coalition formation refers to situations in 
which groups of individually rational agents intend to work 
jointly in (temporary) coalitions with binding agreements 
in order to accomplish their tasks they cannot accomplish 
individually [58, 157]. Research in this area focuses on two 
main problems, namely, coalition negotiation and coalition 
structure generation [145, 146]. Roughly said, for a given 
coalition game (A, v) with a set A of rational agents and char-
acteristic or coalition value function v, the goal is either (a) 
to negotiate a game-theoretically stable coalition structure as 
partition of A with individual payoffs for coalition members, 
or (b) to generate the optimal coalition structure that maxi-
mizes the social welfare or joint profit of the multi-agent sys-
tem as a whole without individual payoff distribution. Both 
problems are computationally expensive, thus potential can-
didates for the investigation of quantum-supported solution 
alternatives. For coalition negotiation this holds subject to 
the chosen stability criteria like the exponential Kernel and 
Shapley value, while coalition structure generation (CSG) 
is a NP-hard optimization problem.

Since early work on quantum (non-)cooperative games 
[29, 52, 79–81, 128], only recently methods for quan-
tum coalition structure generation have been developed 
and experimentally evaluated against classical counter-
parts revealing evidence in favor of some quantum utility 
[175–177]. As an example, [175] presents a direct quantum 
solution of the CSG problem reformulated as a QUBO prob-
lem for both quantum gate-based simulation and quantum 
annealing devices, while [176] proposes a hybrid quantum-
classical CSG method for induced subgraph games. In par-
ticular, the latter leverages quantum annealing to iteratively 
solve the embedded NP-hard optimal splitting problem in 
only linear runtime to find the best bipartition of agents by 
moving down partition hierarchy until no value-increasing 
bipartitions remain. In fact, it explores a larger portion of 
the solution space compared to other approximate classical 
bottom-up solvers and outperforms them with its quadratic 
runtime in the number of agents and an expected worst-case 
approximation ratio of 92% on standard benchmarks.

Remarkably, quantum coalition formation methods have 
already been applied to practical use cases of energy man-
agement [22, 124]. The management of energy resources 
presents complex computational challenges, particularly 
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with scenarios involving dynamic energy consumption and 
optimizing energy distribution in micro-grids and larce-
scale power networks as well. For example, the use case 
problem considered in [124] is to find an optimal coalition 
structure of energy prosumers with the aim to minimize 
network management costs through optimized power flow 
analysis, that is to maximize the overall network efficiency. 
The results of using the quantum CSG method from [176] 
for solving this problem on quantum annealers showcase 
quantum utility compared to classical standard solutions. 
Advancing in this direction will facilitate the broader 
adoption of quantum AI solutions for real-world energy 
management challenges.

Another use case of quantum CSG methods in the aero-
space domain was recently investigated in [178]. The prob-
lem to find constellations of large-scale low-earth satellite 
networks such as StarLink networks by dynamic clustering 
of moving LEO satellites with minimal inter- and intra-
cluster communication is NP-hard. According to initial 
experimental results, the used quantum CSG method on a 
quantum annealer outperformed the classical state-of-the-
art solver for this problem on real-world orbital datasets 
from Celestrak related to Starlink satellites.

Coalition formation methods have also been leveraged 
in the domain of transport and logistics for collaborative 
solutions of the NP-hard problem of vehicle routing and 
variants of the capacitive vehicle routing problem (CVRP) 
[116, 181, 194]. However, quantum-supported solutions 
for the same are still rare and topic of future research 
[62, 82]. For example, in [62] a CVRP is solved hybrid 
quantum-classical through classical clustering and optimal 
route planning in each cluster, while the latter is done with 
a direct quantum optimization algorithm for solving the 
corresponding TSP(Traveling Salesman Problem)-QUBO 
problem on a D-Wave quantum annealer. The method did 
not provide a clear benefit in solution quality and runtime, 
though the latter might change with the advent of a more 
advanced quantum annealer in the future.

4  AI for Quantum Computing

In this section, we turn our attention to the other direction 
of QAI, namely, the use of AI for quantum computing. It 
summarizes selected approaches to exploit AI, particu-
larly ML methods, in support of the whole process from 
quantum algorithm and experiment design, search for 
near-optimal parameters, transpilation of quantum circuits, 
error correction during execution, and the calibration and 
design of quantum devices as shown in Fig. 5. It can be 
seen as a particular example of the field of AI for science.

4.1  Quantum Algorithm and Experiment Design

Though the design and implementation of quantum algo-
rithms in general is manually done by human experts, there 
are quite a few approaches to leverage ML methods in sup-
port of both the experiment design and protocol develop-
ment. There is a common agreement that humans might not 
be predestined to design new experiments and protocols 
in quantum computing when recent experimental findings 
deliver counter-intuitive results. Most approaches to experi-
ment design suggest the use of reinforcement learning and 
minimizing the influence of the human developer.

In this regard, the framework Melvin [98] offers the use 
of ML methods to discover new experimental methods for 
creating and manipulating complex quantum states. It cre-
ates experiments with optical components, arranges them 
randomly, calculates and analyzes quantum states, and sim-
plifies configurations based on user-defined criteria, if the 
desired properties are met. Remarkably, Melvin produced 
correct and useful but unfamiliar, asymmetric techniques 
that are hard to understand intuitively.

Inspired by Melvin, [119] and [180] use the physics-ori-
ented ML approach of projective simulation based on RL for 

Fig. 5  Stack of tasks in the building and operation of quantum com-
puting devices for which AI techniques (currently mainly from ML) 
are utilized
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autonomous experiment design. For example, the authors in 
[119] applied projective simulation for developing complex 
photonic quantum experiments with multi-photon states 
entangled in high dimensions. As a result, the approach 
unexpectedly rediscovered advanced experimental tech-
niques, in particular by interacting with a simulated optical 
table using a set of optical elements to create experiments. It 
places elements on the table, analyzes the resulting quantum 
states, and receives rewards based on the given task and state 
before iterating the process.

In [180] the same approach is used to discover and opti-
mize protocols in quantum communication over long dis-
tances. Their RL agent successfully rediscovered established 
protocols such as for quantum teleportation, entanglement 
purification, and quantum repeaters. The results suggest 
that RL could be effective in finding solutions that outper-
form human-designed ones for long-distance communica-
tion challenges, especially in scenarios with asymmetric 
conditions.

In contrast, [43] investigates the use of differential evo-
lution and particle swarm optimization for improving the 
precision of multi-particle entanglement-free quantum phase 
estimation. Both methods are leveraged to fine-tune feed-
back policies aimed at reducing different types of noise. In 
fact, both methods showed superior robustness and precision 
compared to non-adaptive methods, particularly for scenar-
ios where noisy, non-entangled qubits serve as sensors in 
quantum sensing and metrology.

Related research on explainable AI (XAI) for quantum 
computing is concerned with the use of XAI techniques not 
only to explain the designed quantum algorithms but quan-
tum circuits in general and PQCs for QML (cf. Sect. 3.1) in 
particular. For example, [165] reports that PQCs introduce 
probabilistic errors due to quantum measurements, which 
complicates the use of traditional XAI methods. Moreover, 
with the phase space of a quantum circuit expanding expo-
nentially with the number of qubits, executing XAI meth-
ods in polynomial time becomes challenging. The authors 
evaluated the adaptation of the XAI methods IG (Integrated 
Gradients) and baseline SHAP (SHapley Additive exPlana-
tions) for PQCs using truncated Fourier series. Based on 
their findings, the authors introduced qSHAP (quantum 
SHAP), which scales with the number of features rather 
than qubits, making it suitable for larger quantum circuits, 
and shows more robustness against noise compared to the 
other two approaches.

In [77], SHAP is investigated in the form of quantum 
Shapley (QShap) values to assess the impact of single 
or group of quantum gates in PQCs, similar to evaluat-
ing feature importance in classical ML. QShap values are 
model-agnostic within quantum domains, treating gates 
as players in a coalition game to measure their contribu-
tion to tasks like expressibility, entanglement capability, or 

classification quality (see also [161]). To handle the uncer-
tainty in quantum computing, QShap values are based on 
uncertain Shapley values, which account for measurement 
noise and decoherence. The authors tested QShap values on 
quantum support vector machines (QSVM), quantum gen-
erative adversarial networks (QGANs) and QAOA (cf. Sec-
tion 2.1), reporting on the significance of individual gates 
in these algorithms.

In contrast, using the inception or so-called deep dream-
ing method, [85] analyzes a neural networks’ understanding 
of quantum optics experiments. This method shows the abil-
ity of the used neural network to find novel configurations 
beyond the initial data and reveals a progression from simple 
to complex feature recognition in the layers of the network.

Overall, most progress is made in the area of experiment 
design with algorithm design lacking behind. As to XAI, 
first results, primarily based on Shapley values, were pre-
sented. Further, XAI will get extremely important in QML 
as the EU AI Act defines transparency rules, besides others, 
for all applications of AI, including QAI. Further, a better 
understanding of the influence of individual gates, as pro-
posed in [77], might help in optimizing the depth and width 
of PQCs during the transpilation process.

4.2  Near‑Optimal PQC Parameter Search

Warm-starting of quantum algorithms refers to the process 
of finding near-optimal parameters of PQCs in hybrid quan-
tum-classical algorithms without executing them. They aim 
to reduce the number of quantum circuit evaluations required 
during the optimization. Classical warm-starting protocols 
rely on relaxations of the problem which have to be solved 
classically to find a good initial state [56]. In the following, 
we summarize selected approaches that involve classical ML 
algorithms for this purpose.

For example, [9] investigates four regression-based 
machine learning methods to speedup the QAOA optimiza-
tion loop. These methods include Gaussian process regres-
sion, linear model, regularized support vector machine, 
and regression tree. Of these, Gaussian process regression 
achieved the best results. In particular, despite using a rela-
tively small training set, this approach generalized well and 
led to an average reduction of 44.9% in the number of opti-
mization iterations across all local optimization procedures.

In [84, 105], the integration of graph neural networks 
(GNNs) with QAOA is explored to improve the parameter 
initialization. Various GNN architectures such as graph con-
volutional networks, graph attention networks, graph iso-
morphism networks, and GraphSAGE [75] were investigated 
in [105]. Experimental evaluation with benchmarks for their 
performance in initializing QAOA showed that all GNNs 
provided a more stable and reliable initialization compared 
to random initialization. One of the strengths of GNN-based 
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initialization is its ability to generalize across different 
graph sizes. This means that a GNN trained on smaller 
graph instances can still perform well on larger instances, 
providing a flexible and efficient warm-starting mechanism 
for QAOA. Including graphs of different sizes the GNN 
method in [84] generated solutions of approximately 95% 
of the quality of the Goemans-Williamson algorithm.

The ability of matrix product states (MPS) for improving 
QML algorithms is explored in [48] by addressing the issue 
of vanishing gradients, or barren plateaus that complicate 
the training of PQCs. The authors propose optimizing MPS 
with classical methods such as density matrix renormaliza-
tion group and time-evolving block decimation to approxi-
mate solutions for quantum circuits. The optimized MPS is 
converted into unitary matrices for quantum circuits using 
decompositions. Experiments showed that MPS-initialized 
circuits for problems like Max-Cut on a six-vertex graph 
and image classification with Fashion-MNIST achieved 
better performance, that is, with fewer gradient steps and 
faster convergence compared to random or identity matrix 
initialization.

Overall, ML algorithms show promise in the warm-
starting of variational quantum algorithms. Future research 
might aim at methods to find the optimal parameters of the 
PQCs of such algorithms directly using some sort of ML 
algorithms and therefore replacing the classical optimiza-
tion loop completely. In a similar direction, future ML-based 
algorithms might also assist with choosing the best hyper-
parameters such as for the Ansatz circuit and the number 
of layers, which was not explictly mentioned by the papers 
referenced in this section.

4.3  Transpilation of Quantum Circuits

Given the challenges of NISQ devices, such as low fidel-
ity and short coherence times, quantum circuits must be 
designed with minimal gates. Afterwards, quantum circuit 
transpilation includes the decomposition of non-native gates 
into native ones and the addition of SWAP-gates for connec-
tivity compatibility, followed by an optimization to minimize 
resource usage. IBM Qiskit [86] divides this quantum circuit 
transpilation process into six stages: Init (prepares the circuit 
by unrolling instructions and validating them), layout (maps 
virtual to physical qubits considering connectivity and cali-
bration), routing (ensures backend compatibility with addi-
tional gates), translation (converts gates to the backend’s 
basis set), optimization (reduces circuit complexity), and 
scheduling (applies hardware-aware scheduling). Currently, 
ML-based algorithms are utilized for most of the steps to 
find optimal transpiled circuits. These include evolutionary 
algorithms, deep neural networks, and RL methods.

Evolutionary algorithms including genetic algorithms, 
genetic programming, ant colony optimization, and 

evolutionary deep neural networks are used in all stages of 
the transpilation process [99]. Further, [45] and [60] utilize 
evolutionary algorithms such as evolutionary deep learning 
for an initial qubit mapping.

Neural networks are primarily used for circuit mapping 
and circuit optimization. In [1], neural networks are utilized 
to significantly speed up the circuit mapping process while 
maintaining mapping accuracy and reducing the required 
computational resources. The experiments showed this on a 
5-qubit IBM Q processors and compared to classical state-
of-the-art mapping algorithms over a special data set for 
training [2]. However, [45] argue that the method and dataset 
above lacks correctness, generalization, and diversity of the 
dataset.

In [121], on the other hand, a framework based on long-
short term memory (LSTM) networks is proposed to decide 
whether a quantum circuit can be optimized in the first place. 
The reasoning is that, as mentioned above, the optimiza-
tion process is a complex task and it is not guaranteed to 
receive a more resource efficient quantum circuit. Thus, if 
their framework predicts that the quantum circuit cannot be 
optimized, classical computing resources are saved. Results 
show that their ML model is able to decide if an arbitrary 
quantum circuit can be optimized above a certain threshold 
with an accuracy of 96.7%.

Similar to [121], Quetschlich et al. introduce in [143] 
and [144] an algorithm, which finds the optimal compila-
tion flow for a given quantum circuit. [144] builds on their 
previous work [143] by shifting from reinforcement learn-
ing to a simpler, scalable supervised learning approach for 
predicting optimal compilation options. The proposed tool 
recommends the best compiler options for quantum circuits, 
targeting end-users who may struggle with option selection. 
Using a statistical classifier, the tool predicts the best tech-
nology, device and compiler settings with accurate results 
for about 75% of unseen test circuits.

Paler et al. [134] introduce a quantum circuit mapping 
heuristic, named QXX, and its ML-enhanced version QXX-
MLP to improve layout, routing, and optimization stages. 
The goal is to map circuit qubits to physical qubits while 
optimizing the circuit depth. QXX-MLP uses a multi-layer 
perceptron to infer optimal parameter values for QXX, 
reducing circuit depth by a Gaussian function estimation. 
QXX achieves depth ratios about 30% lower than Qiskit on 
shallow circuits and performs competitively with Qiskit and 
TKET on deeper circuits. Beyond that QXX-MLP achieves 
almost instantaneous layout performance, significantly 
reducing the quantum circuit compilation time.

Reinforcement learning is primarily utilized to find near-
optimal gate synthesis for a specific hardware back-end. 
A deep reinforcement learning method for approximating 
single-qubit unitaries is proposed in [126]. This method aims 
to reduce the overall execution time by learning a general 
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strategy through a single pre-compilation procedure. The 
authors highlight the trade-off between the length of the 
sequence and execution time, suggesting that their approach 
can potentially allow for real-time operations by improving 
on this trade-off.

In [60], the problem of quantum circuit placement [118] 
is addressed as a bilevel optimization problem to minimize 
SWAP counts. The authors use a deep reinforcement learn-
ing algorithm for the lower-level optimization, improving 
SWAP costs through state space encoding. For the upper 
level, as mentioned earlier, an evolutionary algorithm is 
used. This ML-based framework reduces SWAP gates by 
up to 100% and runtime costs by up to 40 times compared to 
heuristic methods.

Fosel et al. [63] describe a deep RL agent that optimizes 
quantum circuits tailored to specific hardware, improving 
efficiency for near-term devices. Their method reduced aver-
age circuit depth by 27% and gate count by 15% in 12-qubit 
random circuits, demonstrating effective resource reduction. 
The RL agent also scales well, optimizing larger circuits 
effectively.

Recently, Kremer et  al. [97] presented an RL-based 
method for synthesizing quantum circuits, including Clif-
ford, Linear Function, and Permutation circuits, which 
directly matches native device instructions and constraints. 
This approach eliminates the need for extra transpilation 
steps, optimizing the transpiling process. It also enhances 
circuit routing, reducing the two-qubit gate depths and 
counts more effectively than heuristics like SABRE. That 
led to a better performance on quantum devices with up to 
133 qubits. For 8- to 10-qubit quantum volume [137] cir-
cuits, the RL method achieved a reduction around 20% in 
the CNOT depth.

In contrast to the aforementioned ML algorithms, the 
authors of [171] discuss the effectiveness of classical auto-
mated reasoning and formal methods in AI, namely, decision 
diagrams, SAT solvers, and graphical calculus-based meth-
ods such as the ZX-calculus, for the compilation of quantum 
circuits. The considered compilation tasks are classical sim-
ulation, optimization, synthesis, and equivalence checking 
of quantum circuits. As one result, the authors expect that 
the use of automated reasoning methods may play a role in 
other quantum computing applications as well, such as for 
the finding of ground states, phase transitions, and quantum 
error correction.

Overall, we have seen several ML algorithms targeting 
one ore more transpilation stages. We are currently at a 
stage, where first ML-enhanced transpilers are rolled out 
to the end-users for testing in IBM Qiskit [97]. However, as 
long as we have only access to NISQ-devices we are always 
striving to find shallower circuits. Furthermore, besides 
reducing the depth of quantum circuits, also reducing the 

width, that is, the number of qubits required, is another topic 
of future research in this context.

4.4  Quantum Error Correction and Mitigation

Quantum error correction and error mitigation are both rele-
vant processes on our way to fault-tolerant quantum comput-
ing. While error correction, as the name suggests, actively 
corrects errors during the execution of a quantum circuit, 
error mitigation targets the readout error and therefore is a 
classical post-processing step.

A significant challenge with quantum error mitigation is 
the necessity for a large number of circuits, which have to be 
run in advance. In essence, each possible bitstring has to be 
tested for read-out errors. In [106], ML is used to improve 
quantum error mitigation by predicting near noise-free val-
ues from noisy quantum output. Their key innovation is that 
trained ML models can mitigate errors without additional 
circuits, reducing overhead compared to zero-noise extrapo-
lation. The authors explore several models, including linear 
regression, random forests, multi-layer perceptrons, and 
graph neural networks, finding that all except graph neural 
networks outperform traditional methods, with random for-
ests consistently performing best. In fact, ML-based quan-
tum error mitigation reduces the quantum resource overhead 
by 30% and the runtime overhead by 50% compared to zero-
noise extrapolation.

Quantum error correction is actively researched as it will 
deliver fault-tolerant quantum computing. In [42], an ML 
algorithm for continuous quantum error correction is pro-
posed. The approach facilitates recurrent neural networks 
to identify bit-flip errors in continuous noisy syndrome 
measurements.

Further, in [74] a deep neural network decoder for quan-
tum error correction on IBM quantum processors was devel-
oped and benchmarked. The study demonstrates the DNN 
decoder’s capability to efficiently process syndrome data 
and correct errors, outperforming the traditional Minimum-
Weight-Perfect-Matching method in certain aspects. The 
performance of the DNN decoder was validated through 
simulations and experiments on IBM devices, showing 
promise for real-time, scalable error correction, which is 
crucial for fault-tolerant quantum computing.

Overall, the research on ML algorithms for quantum error 
correction and quantum error mitigation is still in its early 
stages. In addition, the use of AI methods other than from 
ML for quantum error correction remains to be investigated.

4.5  Calibration of Quantum Computing Devices

The calibration and design of quantum computing devices 
such as superconducting or ion trap gate-based quantum 
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computers, quantum annealers and quantum sensors can 
benefit from classical ML.

This is originally an application of the field of quan-
tum optimal control theory [67, 95], which aims at finding 
the right analogue controls for given hardware to perform 
desired quantum tasks. This field has already used math-
ematical tools similar to those of AI and is now rephrasing 
a lot of its work in modern AI language [154, 186, 188]. 
In fact, this has recently led to the tongue-in-cheek remark 
statement, that AI is in fact a subfield of quantum control 
theory.

These methods typically have a model-based and an 
experiment-based part and ideally also use experimental 
data to improve the model, in order to create a digital twin 
and provide a shortcut for optimal control. This is done in 
isolation e.g. in [40, 65, 69, 76, 164, 166] and integrated 
in the commercial offerings of a number of startups [18, 
125, 155].

For example, [131] presents a practical, efficient, and 
model-independent ML method for Bayesian parameter 
estimation (BPE) in quantum systems. Traditional BPE 
methods often require extensive calibration and explicit 
modeling of the measurement apparatus, which makes 
them impractical for complex systems. The authors frame 
parameter estimation as a classification problem solved 
using supervised learning techniques, where the output 
of the neural network is a Bayesian posterior distribution 
centered at the true parameter value, bounded by Fisher 
information. This approach requires fewer calibration 
measurements and is model-independent outperforming 
conventional calibration-based BPE.

In [187], the energy spectrum of a Hamiltonian on a 
superconducting quantum device is predicted, outperform-
ing the current state-of-the-art by over 20% . The method 
uses multi-target regression to predict multiple related var-
iables, uncovering relationships between them by employ-
ing explainable AI techniques. This approach significantly 
improves the accuracy of quantum device calibration.

To simplify the calibration process, [35] introduces a 
method to calibrate quantum photonic sensors using neu-
ral networks. The approach relies on data collected using 
available probe states, reducing overhead, and implicitly 
accounting for imperfections. The neural network demon-
strated robustness to noise and scalability, making it suit-
able for future quantum technologies. Quantum hardware 
design can be made more systematic and be improved by 
AI as well, as shown, for example, in [64, 120].

Overall, the calibration of quantum devices can be prac-
tically improved through the use of ML. In conjunction 
with ML-assisted experiment design (see Sect. 4.1) one 
even might find advantages in the use of ML for design-
ing new quantum computers with better fidelities and 
connectivity.

5  Conclusions

Research in the interdisciplinary and nascent field of quan-
tum AI is concerned with the use of quantum computing 
for addressing computationally hard problems in AI, and 
vice versa. So far, an impressive progress was made in 
both directions of QAI research. In fact, there are quite a 
few quantum-supported solutions of selected hard optimi-
zation problems in AI with different degrees of potential 
quantum utility for relevant use cases in various domains 
such as manufacturing, automated driving, finance, and 
energy management. In addition, initial research revealed 
that quantum computing itself may benefit from the use of 
ML for optimizing the control, performance and calibra-
tion of quantum computational devices.

In our view, future QAI research across all its subfields 
should focus even more on investigations under what con-
ditions and settings in concrete (industrial) use cases are 
direct or hybrid quantum-classical solutions feasible with 
what quantum utility in practice. Further, the appropriate 
and timely transition to and investigation of the feasibility 
and potential of nowadays QAI methods on future built 
non-NISQ devices is another challenge. That is particu-
larly important in the context of current expectations of 
the economic value of QAI applications in relevant indus-
tries. Among other, this requires both the physics and 
computer science communities to even more join forces, 
and on the other hand, a further, sustainable support of 
research on both quantum AI and the building of more 
resourceful, fault-tolerant quantum computing devices at 
government and industry level worldwide.
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