001034979 001__ 1034979
001034979 005__ 20250203133243.0
001034979 0247_ $$2doi$$a10.1007/s11249-024-01933-6
001034979 0247_ $$2ISSN$$a1023-8883
001034979 0247_ $$2ISSN$$a1573-2711
001034979 0247_ $$2datacite_doi$$a10.34734/FZJ-2025-00085
001034979 0247_ $$2WOS$$aWOS:001385133500001
001034979 037__ $$aFZJ-2025-00085
001034979 082__ $$a670
001034979 1001_ $$0P:(DE-HGF)0$$aRodriguez, N.$$b0
001034979 245__ $$aOn How to Determine Surface Roughness Power Spectra
001034979 260__ $$aDordrecht$$bSpringer Science  Business Media B.V.$$c2025
001034979 3367_ $$2DRIVER$$aarticle
001034979 3367_ $$2DataCite$$aOutput Types/Journal article
001034979 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1736327324_5687
001034979 3367_ $$2BibTeX$$aARTICLE
001034979 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001034979 3367_ $$00$$2EndNote$$aJournal Article
001034979 520__ $$aAnalytical contact mechanics theories depend on surface roughness through the surface roughness power spectrum. In the present study, we evaluated the usability of various experimental methods for studying surface roughness. Our findings indicated that height data obtained from optical methods often lack accuracy and should not be utilized for calculating surface roughness power spectra. Conversely, engineering stylus instruments and atomic force microscopy (AFM) typically yield reliable results that are consistent across the overlapping roughness length scale region. For surfaces with isotropic roughness, the two-dimensional (2D) power spectrum can be derived from the one-dimensional (1D) power spectrum using several approaches, which we explored in this paper.
001034979 536__ $$0G:(DE-HGF)POF4-5211$$a5211 - Topological Matter (POF4-521)$$cPOF4-521$$fPOF IV$$x0
001034979 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001034979 7001_ $$0P:(DE-HGF)0$$aGontard, L.$$b1
001034979 7001_ $$0P:(DE-HGF)0$$aMa, C.$$b2
001034979 7001_ $$0P:(DE-Juel1)201319$$aXu, Ruibin$$b3$$ufzj
001034979 7001_ $$0P:(DE-Juel1)130885$$aPersson, Bo$$b4$$eCorresponding author$$ufzj
001034979 773__ $$0PERI:(DE-600)2015908-0$$a10.1007/s11249-024-01933-6$$gVol. 73, no. 1, p. 18$$n1$$p18$$tTribology letters$$v73$$x1023-8883$$y2025
001034979 8564_ $$uhttps://juser.fz-juelich.de/record/1034979/files/s11249-024-01933-6.pdf$$yOpenAccess
001034979 8767_ $$d2025-01-06$$eHybrid-OA$$jDEAL
001034979 909CO $$ooai:juser.fz-juelich.de:1034979$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC_DEAL$$popen_access$$popenaire
001034979 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a BD Medical-Pharmaceutical Systems 1 Becton Drive, Franklin Lakes, NJ, 07419, USA$$b0
001034979 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a Orlando Christian Prep, 500 S Semoran Blvd., Orlando, FL, 32807, USA$$b0
001034979 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a BD Medical-Pharmaceutical Systems, 11 Rue Aritides-Verges, 38801, Le Pont de Claix, France$$b1
001034979 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)201319$$aForschungszentrum Jülich$$b3$$kFZJ
001034979 9101_ $$0I:(DE-HGF)0$$6P:(DE-Juel1)201319$$a Multiscale Consulting, Wolfshovener Str. 2, Jülich, 52428, Germany$$b3
001034979 9101_ $$0I:(DE-HGF)0$$6P:(DE-Juel1)201319$$a State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China$$b3
001034979 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130885$$aForschungszentrum Jülich$$b4$$kFZJ
001034979 9101_ $$0I:(DE-HGF)0$$6P:(DE-Juel1)130885$$a State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China$$b4
001034979 9101_ $$0I:(DE-HGF)0$$6P:(DE-Juel1)130885$$a Multiscale Consulting, Wolfshovener Str. 2, Jülich, 52428, Germany$$b4
001034979 9131_ $$0G:(DE-HGF)POF4-521$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5211$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vQuantum Materials$$x0
001034979 9141_ $$y2025
001034979 915pc $$0PC:(DE-HGF)0000$$2APC$$aAPC keys set
001034979 915pc $$0PC:(DE-HGF)0113$$2APC$$aDEAL: Springer Nature 2020
001034979 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2023-08-24
001034979 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
001034979 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2023-08-24
001034979 915__ $$0StatID:(DE-HGF)3002$$2StatID$$aDEAL Springer$$d2023-08-24$$wger
001034979 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001034979 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2024-12-12$$wger
001034979 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bTRIBOL LETT : 2022$$d2024-12-12
001034979 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-12
001034979 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-12
001034979 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2024-12-12
001034979 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2024-12-12
001034979 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-12
001034979 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2024-12-12
001034979 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-12
001034979 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2024-12-12
001034979 9201_ $$0I:(DE-Juel1)PGI-1-20110106$$kPGI-1$$lQuanten-Theorie der Materialien$$x0
001034979 980__ $$ajournal
001034979 980__ $$aVDB
001034979 980__ $$aUNRESTRICTED
001034979 980__ $$aI:(DE-Juel1)PGI-1-20110106
001034979 980__ $$aAPC
001034979 9801_ $$aAPC
001034979 9801_ $$aFullTexts