001 | 1034979 | ||
005 | 20250203133243.0 | ||
024 | 7 | _ | |a 10.1007/s11249-024-01933-6 |2 doi |
024 | 7 | _ | |a 1023-8883 |2 ISSN |
024 | 7 | _ | |a 1573-2711 |2 ISSN |
024 | 7 | _ | |a 10.34734/FZJ-2025-00085 |2 datacite_doi |
024 | 7 | _ | |a WOS:001385133500001 |2 WOS |
037 | _ | _ | |a FZJ-2025-00085 |
082 | _ | _ | |a 670 |
100 | 1 | _ | |a Rodriguez, N. |0 P:(DE-HGF)0 |b 0 |
245 | _ | _ | |a On How to Determine Surface Roughness Power Spectra |
260 | _ | _ | |a Dordrecht |c 2025 |b Springer Science Business Media B.V. |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1736327324_5687 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a Analytical contact mechanics theories depend on surface roughness through the surface roughness power spectrum. In the present study, we evaluated the usability of various experimental methods for studying surface roughness. Our findings indicated that height data obtained from optical methods often lack accuracy and should not be utilized for calculating surface roughness power spectra. Conversely, engineering stylus instruments and atomic force microscopy (AFM) typically yield reliable results that are consistent across the overlapping roughness length scale region. For surfaces with isotropic roughness, the two-dimensional (2D) power spectrum can be derived from the one-dimensional (1D) power spectrum using several approaches, which we explored in this paper. |
536 | _ | _ | |a 5211 - Topological Matter (POF4-521) |0 G:(DE-HGF)POF4-5211 |c POF4-521 |f POF IV |x 0 |
588 | _ | _ | |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de |
700 | 1 | _ | |a Gontard, L. |0 P:(DE-HGF)0 |b 1 |
700 | 1 | _ | |a Ma, C. |0 P:(DE-HGF)0 |b 2 |
700 | 1 | _ | |a Xu, Ruibin |0 P:(DE-Juel1)201319 |b 3 |u fzj |
700 | 1 | _ | |a Persson, Bo |0 P:(DE-Juel1)130885 |b 4 |e Corresponding author |u fzj |
773 | _ | _ | |a 10.1007/s11249-024-01933-6 |g Vol. 73, no. 1, p. 18 |0 PERI:(DE-600)2015908-0 |n 1 |p 18 |t Tribology letters |v 73 |y 2025 |x 1023-8883 |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/1034979/files/s11249-024-01933-6.pdf |y OpenAccess |
909 | C | O | |o oai:juser.fz-juelich.de:1034979 |p openaire |p open_access |p OpenAPC_DEAL |p driver |p VDB |p openCost |p dnbdelivery |
910 | 1 | _ | |a BD Medical-Pharmaceutical Systems 1 Becton Drive, Franklin Lakes, NJ, 07419, USA |0 I:(DE-HGF)0 |b 0 |6 P:(DE-HGF)0 |
910 | 1 | _ | |a Orlando Christian Prep, 500 S Semoran Blvd., Orlando, FL, 32807, USA |0 I:(DE-HGF)0 |b 0 |6 P:(DE-HGF)0 |
910 | 1 | _ | |a BD Medical-Pharmaceutical Systems, 11 Rue Aritides-Verges, 38801, Le Pont de Claix, France |0 I:(DE-HGF)0 |b 1 |6 P:(DE-HGF)0 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 3 |6 P:(DE-Juel1)201319 |
910 | 1 | _ | |a Multiscale Consulting, Wolfshovener Str. 2, Jülich, 52428, Germany |0 I:(DE-HGF)0 |b 3 |6 P:(DE-Juel1)201319 |
910 | 1 | _ | |a State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China |0 I:(DE-HGF)0 |b 3 |6 P:(DE-Juel1)201319 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 4 |6 P:(DE-Juel1)130885 |
910 | 1 | _ | |a State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China |0 I:(DE-HGF)0 |b 4 |6 P:(DE-Juel1)130885 |
910 | 1 | _ | |a Multiscale Consulting, Wolfshovener Str. 2, Jülich, 52428, Germany |0 I:(DE-HGF)0 |b 4 |6 P:(DE-Juel1)130885 |
913 | 1 | _ | |a DE-HGF |b Key Technologies |l Natural, Artificial and Cognitive Information Processing |1 G:(DE-HGF)POF4-520 |0 G:(DE-HGF)POF4-521 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-500 |4 G:(DE-HGF)POF |v Quantum Materials |9 G:(DE-HGF)POF4-5211 |x 0 |
914 | 1 | _ | |y 2025 |
915 | p | c | |a APC keys set |0 PC:(DE-HGF)0000 |2 APC |
915 | p | c | |a DEAL: Springer Nature 2020 |0 PC:(DE-HGF)0113 |2 APC |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2023-08-24 |
915 | _ | _ | |a Creative Commons Attribution CC BY 4.0 |0 LIC:(DE-HGF)CCBY4 |2 HGFVOC |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2023-08-24 |
915 | _ | _ | |a DEAL Springer |0 StatID:(DE-HGF)3002 |2 StatID |d 2023-08-24 |w ger |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
915 | _ | _ | |a Nationallizenz |0 StatID:(DE-HGF)0420 |2 StatID |d 2024-12-12 |w ger |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b TRIBOL LETT : 2022 |d 2024-12-12 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2024-12-12 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2024-12-12 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |d 2024-12-12 |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |d 2024-12-12 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2024-12-12 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1160 |2 StatID |b Current Contents - Engineering, Computing and Technology |d 2024-12-12 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2024-12-12 |
915 | _ | _ | |a IF < 5 |0 StatID:(DE-HGF)9900 |2 StatID |d 2024-12-12 |
920 | 1 | _ | |0 I:(DE-Juel1)PGI-1-20110106 |k PGI-1 |l Quanten-Theorie der Materialien |x 0 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a I:(DE-Juel1)PGI-1-20110106 |
980 | _ | _ | |a APC |
980 | 1 | _ | |a APC |
980 | 1 | _ | |a FullTexts |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|