001     1034979
005     20250203133243.0
024 7 _ |a 10.1007/s11249-024-01933-6
|2 doi
024 7 _ |a 1023-8883
|2 ISSN
024 7 _ |a 1573-2711
|2 ISSN
024 7 _ |a 10.34734/FZJ-2025-00085
|2 datacite_doi
024 7 _ |a WOS:001385133500001
|2 WOS
037 _ _ |a FZJ-2025-00085
082 _ _ |a 670
100 1 _ |a Rodriguez, N.
|0 P:(DE-HGF)0
|b 0
245 _ _ |a On How to Determine Surface Roughness Power Spectra
260 _ _ |a Dordrecht
|c 2025
|b Springer Science Business Media B.V.
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1736327324_5687
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Analytical contact mechanics theories depend on surface roughness through the surface roughness power spectrum. In the present study, we evaluated the usability of various experimental methods for studying surface roughness. Our findings indicated that height data obtained from optical methods often lack accuracy and should not be utilized for calculating surface roughness power spectra. Conversely, engineering stylus instruments and atomic force microscopy (AFM) typically yield reliable results that are consistent across the overlapping roughness length scale region. For surfaces with isotropic roughness, the two-dimensional (2D) power spectrum can be derived from the one-dimensional (1D) power spectrum using several approaches, which we explored in this paper.
536 _ _ |a 5211 - Topological Matter (POF4-521)
|0 G:(DE-HGF)POF4-5211
|c POF4-521
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Gontard, L.
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Ma, C.
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Xu, Ruibin
|0 P:(DE-Juel1)201319
|b 3
|u fzj
700 1 _ |a Persson, Bo
|0 P:(DE-Juel1)130885
|b 4
|e Corresponding author
|u fzj
773 _ _ |a 10.1007/s11249-024-01933-6
|g Vol. 73, no. 1, p. 18
|0 PERI:(DE-600)2015908-0
|n 1
|p 18
|t Tribology letters
|v 73
|y 2025
|x 1023-8883
856 4 _ |u https://juser.fz-juelich.de/record/1034979/files/s11249-024-01933-6.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:1034979
|p openaire
|p open_access
|p OpenAPC_DEAL
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a BD Medical-Pharmaceutical Systems 1 Becton Drive, Franklin Lakes, NJ, 07419, USA
|0 I:(DE-HGF)0
|b 0
|6 P:(DE-HGF)0
910 1 _ |a Orlando Christian Prep, 500 S Semoran Blvd., Orlando, FL, 32807, USA
|0 I:(DE-HGF)0
|b 0
|6 P:(DE-HGF)0
910 1 _ |a BD Medical-Pharmaceutical Systems, 11 Rue Aritides-Verges, 38801, Le Pont de Claix, France
|0 I:(DE-HGF)0
|b 1
|6 P:(DE-HGF)0
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)201319
910 1 _ |a Multiscale Consulting, Wolfshovener Str. 2, Jülich, 52428, Germany
|0 I:(DE-HGF)0
|b 3
|6 P:(DE-Juel1)201319
910 1 _ |a State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
|0 I:(DE-HGF)0
|b 3
|6 P:(DE-Juel1)201319
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)130885
910 1 _ |a State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
|0 I:(DE-HGF)0
|b 4
|6 P:(DE-Juel1)130885
910 1 _ |a Multiscale Consulting, Wolfshovener Str. 2, Jülich, 52428, Germany
|0 I:(DE-HGF)0
|b 4
|6 P:(DE-Juel1)130885
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-521
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Quantum Materials
|9 G:(DE-HGF)POF4-5211
|x 0
914 1 _ |y 2025
915 p c |a APC keys set
|0 PC:(DE-HGF)0000
|2 APC
915 p c |a DEAL: Springer Nature 2020
|0 PC:(DE-HGF)0113
|2 APC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2023-08-24
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2023-08-24
915 _ _ |a DEAL Springer
|0 StatID:(DE-HGF)3002
|2 StatID
|d 2023-08-24
|w ger
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2024-12-12
|w ger
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b TRIBOL LETT : 2022
|d 2024-12-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-12-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2024-12-12
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2024-12-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2024-12-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-12
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2024-12-12
920 1 _ |0 I:(DE-Juel1)PGI-1-20110106
|k PGI-1
|l Quanten-Theorie der Materialien
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)PGI-1-20110106
980 _ _ |a APC
980 1 _ |a APC
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21