
Vol.:(0123456789)

Tribology Letters           (2025) 73:18  
https://doi.org/10.1007/s11249-024-01933-6

ORIGINAL PAPER

On How to Determine Surface Roughness Power Spectra

N. Rodriguez1,2 · L. Gontard3 · C. Ma4 · R. Xu4,5,6 · B. N. J. Persson4,5,6

Received: 16 July 2024 / Accepted: 28 October 2024 
© The Author(s) 2024

Abstract
Analytical contact mechanics theories depend on surface roughness through the surface roughness power spectrum. In the 
present study, we evaluated the usability of various experimental methods for studying surface roughness. Our findings 
indicated that height data obtained from optical methods often lack accuracy and should not be utilized for calculating 
surface roughness power spectra. Conversely, engineering stylus instruments and atomic force microscopy (AFM) typically 
yield reliable results that are consistent across the overlapping roughness length scale region. For surfaces with isotropic 
roughness, the two-dimensional (2D) power spectrum can be derived from the one-dimensional (1D) power spectrum using 
several approaches, which we explored in this paper.
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1 Introduction

The quality of the surfaces of solids has become extremely 
important in the design and production of components in 
particular in high tech applications [1–5] and biological 
and medical applications [6–10]. This is particularly true 
for the microgeometry (surface roughness). In most engi-
neering applications just one or two parameters (numbers) 
are given to characterize the surface roughness. The most 
common parameters are the arithmetical average Ra and 
the maximum height parameter Rz, both of which can be 
obtained from a single line scan of the height topography. 
Some studies also present the height probability distribu-
tion Ph and the surface roughness power spectrum C(q) , 
from which most standard surface roughness parameters 
can be obtained [11–16].

Randomly rough surfaces are surfaces that can be rep-
resented as a sum of plane waves with random phases. For 
such surfaces, the power spectra contain all the (ensemble 
averaged) information about the surface roughness. For 
this reason in most analytical contact mechanics theories 
(with or without adhesion) the roughness enters only as 
C(q) . In these theories, the (ensemble averaged) area of 
real contact, the interfacial stress distribution, and the dis-
tribution of interfacial separations are all determined by 
C(q) [17–19].

Fundamental investigations about surface roughness 
were performed by Longuet-Higgins, who analyzed the 
statistical geometry of random surfaces [20], and also a 
general statistical analysis of a random, moving surface 
[21]. Nayak introduced a random process model of rough 
surfaces, and studied the properties of height-height cor-
relation functions in both real and wavevector space [11]. 
The properties of random rough surfaces of significance 
in their contact was studied by Whitehouse and Archard 
[22], and Gray and Johnson studied the dynamic response 
of elastic bodies in rolling contact with random roughness 
of their surfaces [23].

All topography measurements involve interaction 
between the sensing probe and the surface. Some methods 
involve a direct (probe-tip–substrate) solid contact while 
others involve exposing the studied solid to electromag-
netic waves or electron beams, which may modify the sur-
face topography. For solid contact methods like stylus, the 
contact stress at the probe tip may be very high resulting in 
elastoplastic deformation and scratches on the studied sur-
faces. Non-contact methods like optical (e.g., laser-based) 
methods may locally increase the temperature and induce 
thermally activated processes and surface modifications. 
We note that some materials, like soft gels and some bio-
logical materials, cannot be studied directly using engi-
neering stylus instruments, and even non-contact AFM 

may be problematic in some cases because it exposes the 
substrate surfaces to attractive (e.g., Van der Waals or 
electric) forces and repulsive forces when the tip is close 
to the surface. For stylus measurements on soft solids, e.g., 
soft rubber materials, the attractive tip-substrate force can 
effectively modify the surface topography as observed for 
silicone rubber (PDMS) where stick-slip occurred [24]. 
However, sometimes replicas made using an elastically 
stiff (glassy) polymer can be obtained from soft (and hard) 
solids and the topography of the replica can be studied 
using stylus instruments [24]. When transparent materials 
are studied using optical methods several problems may 
occur e.g., reflections of the electromagnetic waves from 
the internal surfaces of the sample, as observed in some 
cases for ice [25]. Scanning tunneling microscopy (STM) 
can only be performed on materials with high enough elec-
tric conductivity and the tunneling electrons can result in 
surface modifications, at least on the atomic scale.

Several experimental methods have been used to obtain 
surface roughness power spectra: 

(a) Optical methods, e.g., light scattering or interferometric 
methods [26].

(b) Stylus methods, e.g., engineering stylus and atomic 
force microscopy (AFM) [27].

(c) Optical, Xerographic, X-ray, and neutron reflectivity, or 
electron microscopy study of the line profile of vertical 
sections (thin slices) of the sample [24, 28, 29].

(d) X-Ray Tomography [30].
(e) Scanning tunneling microscopy (STM) [15, 31].

To cover all relevant length scales one usually needs to 
combine several methods. Optical methods are limited by 
the wavelength of the light and the shortest length scales 
that can be probed are usually of order ∼ 1 μm . The (maxi-
mum) resolution of stylus measurements is determined by 
the radius of curvature R of the probe tip and the (minimum) 
curvature radius R∗ of the valleys of the surface roughness 
profile (if R > R∗ the tip cannot penetrate into the cavity) 
[32, 33]. For engineering stylus instrument the tip curva-
ture is typically R ∼ 1 μm while for AFM very sharp tips 
with R ∼ 1 nm are often used, and sometimes atomic struc-
tures (at nanometer length scales) can be resolved in AFM 
measurements. However, surface roughness at the atomic 
scale is a somewhat ill-defined concept and the measured 
topography depends on the probe-tip substrate interaction 
potential and charge density profiles and involves quantum 
mechanical considerations. However, this is really not a 
limitation since the atomic scale “roughness” (e.g., atomic 
steps or adatoms) can anyhow not be directly included in 
contact mechanics models (which are usually based on 
continuum mechanics), but require an atomistic approach 
such as Molecular Dynamics, so a “multi-physics” approach 
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may be needed to fully understand a phenomena depending 
on the surface roughness. Thus the shortest wavelength for 
which the power spectrum is needed is of order ∼ 1 nm.

The maximum lateral size of the studied surface area 
using AFM (and STM) is for most instruments of order 
∼ 100 μm so if longer wavelength roughness matters AFM 
must be combined with other methods. Recently the use of 
optical methods has proliferated because of their simplicity 
and speed. These methods produce nice looking pictures but 
we will show that the topography is not correctly reproduced 
in most cases and we recommend against using optical meth-
ods for quantitative topography studies.

In this study, we will discuss the usefulness of different 
experimental methods on “smooth” and “rough” surfaces 
of elastically stiff and optically non-transparent solids. We 
will show how the 2D power spectra, which enter contact 
mechanics theories, can be obtained from the 1D power 
spectra. We find that in many cases optical methods fail 
while engineering stylus and AFM measurements usually 
give very good results.

2  Surface Roughness Correlation Functions

Consider a surface with the height profile z = h(x), where 
x = (x, y) is a point in the surface plane. We assume no 
overhangs so that for each point x there is only one height 
coordinate h(x) . We assume that the surface is nominally 
flat and that we choose the origin of the z-coordinate so that 
⟨h(x)⟩ = 0 , where ⟨..⟩ stands for ensemble averaging. In the 
most general case, to fully characterize the statistical proper-
ties of the surface, one needs to determine an infinite number 
of correlation functions:

For randomly rough surfaces all the statistical properties of 
the surface are already contained in the lowest-order cor-
relation function:

In this case, all correlation functions with an odd number of 
height coordinates h(x) vanish, and those with an even num-
ber of height coordinates can be written as products of the 
pair correlations function (1) (see Appendix A in Ref. [14]). 
Randomly rough surfaces have Gaussian height probability 
distributions which are not observed for all surfaces of engi-
neering interest but are good approximations in many cases, 
such as for sandblasted surfaces or surfaces produced by 
crack propagation. In analytical contact mechanics theories 
using the top power spectrum one can often obtain useful 
results for the contact between surfaces with non-Gaussian 
roughness. The top power spectrum replaces the roughness 

⟨h(x)h(��)⟩, ⟨h(x)h(��)h(���)⟩, ...

(1)C(x, ��) = ⟨h(x)h(��)⟩

below the average plane with the same type of roughness as 
above the average plane and is useful in contact mechanics 
applications where the contact only occurs between the bod-
ies in the upper half of the roughness profile [14].

If the statistical properties of the surface are translational 
invariant, the correlation function (1) only depends on the 
coordinate difference x − �

� , and no information will be lost 
if we put x� = 0 in (1). For such systems, it is more useful 
to study the correlation function (1) in wavevector space 
q = (qx, qy) with the 2D surface roughness power spectrum 
defined as:

For surfaces with roughness with isotropic properties, C2D(q) 
depends only on the magnitude q = |q| of the wave vector.

In calculating power spectra C2D(q) from measured 
topography data, instead of using (2) it is more convenient 
to use the Fast Fourier Transform Method to first calculate 
the height in wavevector space:

from which one can obtain [14]

where A0 = L2
0
 is the studied surface area.

Randomly rough surfaces can be obtained by adding 
plane waves with random phases:

where �q are random numbers uniformly distributed 
between 0 and 2� . The parameter Bq in (3) can be written as 
Bq = (2�∕L)[C2D(q)]

1∕2.
The power spectrum (2) is of course also defined for sur-

faces with non-random roughness and can be used to express 
many physical quantities. For example, when an elastic solid 
(with Young’s modulus E and Poisson ratio � ) is squeezed 
into complete contact with a rough but nominally flat rigid 
surface, the elastic energy stored at the interface due to the 
deformations induced by the surface roughness is given by:

where A0 is the nominal surface area and E∗ = E∕(1 − �2) 
is the effective Young’s modulus, and we have assumed no 
interfacial friction. Other important quantities determined 
by C2D(q) are the root-mean-square (rms) roughness hrms 
and the rms slope �:

(2)C2D(q) =
1

(2�)2 ∫ d2x ⟨h(x)h(0)⟩eiq⋅x

h(q) =
1

(2�)2 ∫A0

d2x h(x)e−iq⋅x

C2D(q) =
(2�)2

A0

|h(q)|2,

(3)h(x) =
∑

q

Bqe
iq⋅x+i�q

,

(4)Uel =
1

2
E∗A0 ∫ d2q qC2D(q),
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The parameters hrms and � are usually denoted Sq and Sdq.
A randomly rough surface has a Gaussian height prob-

ability distribution:

This equation implies that for an infinite system, there will 
be arbitrary high surface points. However, for any finite 
system, the probability of finding very high surface points 
is small. Non-random surfaces usually have non-Gaussian 
height probabilities, and for such surfaces skewness and kur-
tosis are very useful quantities that are defined as:

where

For randomly rough surfaces ( Ph is Gaussian), Ssk = 0 and 
Sku = 3.

3  Surface Roughness Power Spectra: Theory

The 2D power spectrum can be calculated from the height 
coordinate of a surface z = h(x) with x = (x, y) , which is 
assumed given in N × N data points (typically N = 512 or 
1024). The studied surface area may be part of the surface 
of a curved body but we assume that the macroscopic cur-
vature is removed so that ⟨h⟩ = 0 . As discussed above, the 
roughness profile z = h(x) of a randomly rough surface can 
be written as a sum of plane waves eiq⋅x with different wave 
vectors q . The wavenumber q = |q| = 2�∕�, where � is the 
wavelength of one roughness component.

The most important property of a rough surface is its 2D 
power spectrum (2). Assuming that the surface has isotropic 
statistical properties, C2D(q) depends only on the magnitude 
q = |q| of the wave vector. A self-affine fractal surface has 
a power spectrum C2D(q) ∼ q−2(1+H), (where H is the Hurst 
exponent related to the fractal dimension Df = 3 − H  ), 
which is a straight line with the slope −2(1 + H) when plot-
ted on a log-log scale. Most solids have surface roughness 
with the Hurst exponent 0.7 < H < 1 (see Ref. [34]).

(5)h2
rms

=⟨h2⟩ = ∫ d2q C2D(q)

(6)�2 =⟨(∇h)2⟩ = ∫ d2q q2C2D(q)

(7)Ph =
1

(2�)1∕2hrms

e−(h∕hrms)
2∕2.

(8)Ssk =
⟨h3⟩

⟨h2⟩2∕3
, Sku =

⟨h4⟩
⟨h2⟩2

,

⟨hn⟩ = ∫
∞

−∞

dh hnPh

For a one-dimensional (1D) line scan z = h(x) , one can 
calculate the 1D power spectrum defined by:

Since ⟨h(x)h(0)⟩ → ⟨h(x)⟩⟨h(0)⟩ = 0 as |x| → ∞ this integral 
is usually well-defined and in most cases, the limits ±∞ 
can be replaced by ±L∕2 , where L is the length of the line 
over which the topography was measured. We note that most 
engineering surfaces have power spectra with long wave-
length roll-off regions (say for the wavenumber q < qr ), and 
for such surfaces, it is enough to measure h(x) over a length 
a few times 1∕qr.

Using (2) and (9) it is easy to show that the mean-
square (ms) roughness

If we assume the surface has self-affine fractal roughness, 
the power spectrum can be written as

which is defined for q0 < q < q1 , and zero otherwise, then 
using (10) we get

where we have assumed q1∕q0 >> 1 and H > 0 , thus

In a similar way using (9) and (10) we get

Note that C1D = �qC2D but this relation only holds exactly 
when C2D is a power law in the wavenumber q (see below).

For surfaces with isotropic roughness the 2D power 
spectrum C2D(q) can be obtained directly from C1D(q) (see 
[35]):

This relation for calculating the 2D power spectrum from 
the 1D power spectrum is very useful. The related relation 
on how to obtain the 1D power spectrum from the 2D power 
spectrum is less useful [11]:

(9)C1D(q) =
1

2� ∫
∞

−∞

dx ⟨h(x)h(0)⟩eiqx

(10)⟨h2⟩ = h2
rms

= 2� ∫
∞

0

dk kC2D(k) = 2∫
∞

0

dk C1D(k)

C2D(q) = C0q
−2−2H

h2
rms

= 2� ∫
q1

q0

dk C0k
−1−2H ≈

�

H
C0q

−2H
0 ,

(11)C2D =
H

�
h2
rms

1

q2
0

(
q

q0

)−2−2H

(12)C1D = Hh2
rms

1

q0

(
q

q0

)−1−2H

(13)C2D(q) =
1

� ∫
∞

q

dk
[−C�

1D
(k)]

(
k2 − q2

)1∕2
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If C1D(q) is obtained from line scan measurements it is 
known only numerically. And since it is in general a noisy 
function of the wavenumber q, the derivative C�

1D
(q) will 

typically fluctuate wildly with q making the relation (13) not 
very useful in many practical applications unless C1D(q) can 
be fitted by a smooth function.

Equations (13) and (14) are exact and must hence obey 
the “sum rule” (10). To demonstrate that, taking (13) as an 
example, we calculate

Writing k = qx this gives

Defining qx = y this gives

Using partial integration and assuming that yC1D(y) vanishes 
for y = 0 and y = ∞ we get

where we have used that

an equation that is easy to prove by changing the integration 
variable using x = 1∕cos� . Similarly, one can show that (14) 
satisfies the sum rule (10).

There are two other way to calculate C2D(q) approxi-
mately from C1D(q) . For a self-affine fractal surface (without 
a roll-off) fitting C1D(q) with (12) gives the Hurst exponent 
H and the rms roughness hrms and knowing these parameters 
from (11) we can calculate C2D(q) (see also Appendix A).

A second way is as follows. First note that the mean 
square (ms) roughness amplitude can be obtained from 
C1D(q) and C2D(q) via (10). If the topography is measured 

(14)C1D(q) = 2∫
∞

q

dk
kC2D(k)

(
k2 − q2

)1∕2

I =2� ∫
∞

0

dq qC2D(q)

=2� ∫
∞

0

dq q
1

� ∫
∞

q

dk
[−C�

1D
(k)]

(
k2 − q2

)1∕2

I =2∫
∞

0

dq q∫
∞

1

dx
[−C�

1D
(qx)]

(
x2 − 1

)1∕2

=2∫
∞

1

dx
1

(
x2 − 1

)1∕2 ∫
∞

0

dq q[−C�
1D
(qx)]

I = 2∫
∞

1

dx
1

x2
(
x2 − 1

)1∕2 ∫
∞

0

dy y[−C�
1D
(y)]

I = 2∫
∞

0

dy C1D(y) = h2
rms

,

∫
∞

1

dx
1

x2
(
x2 − 1

)1∕2 = 1

with an instrument with finite resolution then only wave-
numbers below some value q = 2�∕� can be resolved. In 
that case, one would observe an apparent ms roughness

In this equation, q can be considered as a parameter (depend-
ing on the instrument resolution) so we can take the deriva-
tive with respect to q to get

or

which is the same result as found previously by compar-
ing (11) and (12). However, this relation is in general only 
approximate and the exact relation is given by (13). Note in 
particular if C1D(q) has a roll-off region for q < qr , where C1D 
is approximately constant, then from (15) we get in the roll-
off region C2D ∼ 1∕q while the exact result (13) for q << qr 
gives

which is constant. Thus if (15) is used for a self-affine fractal 
surface with a roll-off, one should replace the ∼ 1∕q region 
with a constant determined by C2D at the onset q = qr of the 
roll-off region (here qr refers to the largest wavenumber q 
of the ∼ 1∕q region). In addition the magnitude of C2D(q) 
given by (15) in the self-affine fractal region must be cor-
rected (scaled) by a factor ≈ (1 + 3H)1∕2 which depends on 
the Hurst exponent H (see Appendix A). This correction 
factor is needed in order for the sum rule (10) to be satis-
fied: decreasing C2D(q) in the roll-off region imply we must 
increase C2D(q) in the self-affine fractal region in order for 
the sum rule to be obeyed. Note that the onset of the roll-off 
region occurs at the same wavenumber qr for C1D(q) and 
C2D(q) (see vertical dashed line in Fig. 2). In most practical 
applications, the detailed form of the power spectrum in the 
roll-off region is not very important (but the fact that a roll-
off region exists for q < qr is very important).  

To illustrate the discussion above we have calculated 
the power spectrum for a randomly rough surface obtained 
by adding plane waves with random phases (see (3) and 
Appendix A in Ref. [14]). Fig. 1 shows a mathematically 
generated randomly rough surface with the rms rough-
ness hrms = 1 μm and Hurst exponent H = 0.8 . The small, 
large and roll-off wavenumbers are q0 = 1 × 103 m−1 , 
q1 = 2048 × 103 m−1 and qr = 30 × 103 m−1 , respectively. 
The surface consists of 2048 × 2048 height data points.

h2
rms

≈ 2� ∫
q

0

dk kC2D(k) ≈ 2∫
q

0

dk C1D(k)

2�qC2D(q) ≈ 2C1D(q)

(15)C2D(q) ≈
1

�q
C1D(q)

C2D(q) ≈
1

� ∫
q1

qr

dk
1

k
[−C�

1D
(k)]
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Fig. 2 shows the 1D (red line) and 2D (blue line) power 
spectra calculated from the height profile z = h(x, y) of the 
surface shown in Fig. 1. The 1D power spectrum is the aver-
age of C1D over all 2048 z = h(x) (y constant) lines contained 
in the height profile z = h(x, y).

The red line in Fig. 3 shows the input power spectrum 
used to generate the surface shown in Fig. 1. The blue line 
is the power spectra calculated from the rough surface using 
the 2D power spectrum equation (2). The green line is the 

2D power spectrum obtained from the 1D power spectrum 
(given by the red line in Fig. 2) using the (exact) equation 
(13), while the pink line is calculated using the approximate 
equation (15). Note that the approximate formula (15) gives 
a linear dependency of 1/q in the roll-off region in contrast 
to the nearly constant value resulting from the exact equation 
(13). Additionally, in the self-affine fractal region, the power 
spectrum as described by (15) is underestimated by a factor 
of ≈ (1 + 3H)1∕2 . For H = 0.8 , this factor is approximately 
1.84 (see Appendix A).

4  Surface Roughness Power Spectra: 
Experiment

Using optical and stylus measurements, we have studied the 
surface topography on two types of samples supplied by the 
Surface Topography Challenge [36]. We refer to these two 
types as the “rough” and “smooth” surfaces. In this study, 
six smooth samples: B54, B55, C13, C14, A71, A72 and 
five rough samples: R54, P85, P86, P63, P64 were used. 
The same samples were prepared on one single wafer and 
subsequently cut into 1 cm × 1 cm pieces, so theoretically 
they should have similar surface characteristics.

Both smooth and rough samples have coatings made 
from chromium nitride (CrN). The smooth surface has CrN 
deposited on a prime-grade polished silicon wafer, while the 
rough surface has CrN deposited on the rough “backside” of 
a single-side-polished silicon wafer, which has been subse-
quently etched with isotropic reactive ions. CrN was chosen 
because it is a wear-and-corrosion-resistant coating which 
is widely used in automotive components, cutting tools, and 
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die-casting. CrN is typically deposited via physical vapor 
deposition (PVD), and the present deposition uses a magne-
tron sputtering technique. The silicon substrates were cho-
sen due to their extreme reproducibility in fabrication. The 
two substrates are intended to produce a “smooth surface” 
that is representative of materials used in the semiconductor 
industry, and a “rough surface” that has larger topographic 
variation, as is common in other industrial contexts.

4.1  Engineering Stylus

The topography measurements were performed using two 
stylus profilometers:

(a) A Mitutoyo Portable Surface Roughness Measurement 
Surftest SJ-410 equipped with a diamond tip having a radius 
of curvature R = 1 μm , and with the tip-substrate repulsive 
force FN = 0.75 mN . The step length (pixel) is 0.5 μm , the 
scan length L = 8 mm and the tip speed v = 50 μm∕s . The 
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different engineering stylus instruments. The blue lines are the Surft-
est stylus data while the green lines are using another (Dektak) stylus 
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were obtained on different sample surfaces (samples B55 and C13 for 
the smooth surface and R54 and P86 for the rough surface)
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Fig. 5  The height h(x) as a function of x for the smooth (red) and 
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used for several years (for several 100 topography measurements) 
before performing the measurements reported here
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power spectra shown in Fig. 4 (blue lines) were obtained by 
averaging over three measurements on each surface.

(b) A Bruker Dektak XT, equipped with a diamond tip 
having a radius of curvature R = 0.7 μm , and with the tip-
substrate repulsive forces FN = 1 × 10−5 N and 2 × 10−5 N . 
The scan lengths were L = 3 and 6 mm with steps resolu-
tions of 0.15 and 0.10 μm , respectively. The tip speed varied 
between 33 and 44 μm∕s . The Bruker Dektak was mounted 
on a vibration isolation table.

The blue and green lines in Fig. 4 are the 1D surface 
roughness power spectra of the smooth and rough surfaces 
obtained with the Mitutoyo and Bruker stylus instruments, 
respectively. The two green lines for the smooth and rough 
surfaces were obtained on different sample surfaces (sam-
ples B55 and C13 for the smooth surface and R54 and P86 
for the rough surface). In our original measurement with the 
Brucker stylus, a short wavelength filter was included which 
resulted in large deviations between the two stylus measure-
ments for large wavevectors (not shown). In the Mitutoyo 
case, no filter was used. Filters are used to make some quan-
tities, such as the rms slope, more well-defined1. However, 
many physical quantities, such as the area of real contact, 
depend on the short wavelength roughness. Therefore, no 
filter should be used in calculating power spectra that are 
intended for theoretical calculations.

Figure 5 shows the height h(x) as a function of x for the 
smooth (red) and rough (blue) surfaces as obtained using the 
Surftest stylus instrument.

Figure  6 shows the power spectrum calculated from 
the Mitutoyo data for the samples R54 (rough) and B54 
(smooth) (blue lines, from Fig. 4) and for the surfaces P85 
(rough) and C14 (smooth) using an old (red lines) and new 
(green lines) diamond tip. The old tip was used for several 
years (for several hundred topography measurements) before 
performing the measurements reported here. The blue curve 
in Fig. 6 was measured on B54 (smooth wafer) ∼ 1∕2 year 
after the measurements of the red and green curves. For the 
C14 surface the old and the new tips give nearly the same 
power spectra which indicates that wear (or contaminations) 

on the tips has a negligible influence on the measured 
topography.

4.2  Atomic Force Microscopy (AFM)

We have used two AFM setups in the present study:
(a) A Bruker Dimension 3100 AFM in tapping mode 

(amplitude modulation) equipped with RSTESPA-300 probe 
having a 8 nm tip radius. Two 2D scan pixel numbers were 
used: 512 × 512 and 1024 × 1024 . The scanned areas were as 
follows: 5 × 5 μm2 for the smooth surfaces, and 40 × 40 μm2 
for the rough surfaces. The reason for a larger scan length 
of the rough surfaces was to have a good average over the 
observed “plateau” topography features. Figure 7 shows 
AFM topography images obtained with setup (a) for rough 
and smooth samples.

(b) Veeco Multimode IIIA AFM in tapping mode. 
Three silicon ContAl-G cantilever probes (BudgetSensors, 
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Fig. 7  AFM pictures of the rough and the smooth surfaces. The stud-
ied unit is 40 × 40 μm2 for the rough surface and 5 × 5 μm2 for the 
smooth surface. The square units in a have the linear size ∼ 10 μm

1 On a Bruker Dektak XT info page, one can read: “The power of 
proper filtering for data analysis, according to recognized ISO stand-
ard methods, cannot be overestimated when striving to provide the 
most accurate and reproducible results for a measuring system” and 
“The short cutoff filter with a cutoff spatial frequency of �

s
 is applied 

to this total profile in order to produce the “primary profile”. The 
spatial frequencies that are rejected by the short cutoff are consid-
ered noise ... ” Filters are used for several purposes: (a) to make some 
quantities, like the rms slope, more well-defined or (b) to eliminate 
undesired vibrations of the tip during the scan. (See, ISO-Standard-
ized Filtering for DektakXT Stylus Profilers, Application Note 550, 
Matt Novak and Son Bui, Bruker Nano Surfaces Division, Tucson, 
AZ USA.) However, it is often possible to avoid tip vibration by tun-
ing the contact force and scan speed. In general, filtering should never 
be used if the topography is used as input for theory calculations
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Bulgaria) were used in the measurements, one for sample 
A71, one for A72 and P63, and one for P64. The cantilevers 
have resonance frequencies of ∼ 14 kHz , the spring con-
stants of ∼ 0.2 N∕m , and tip apex radii of ∼ 10 nm . The 
scanning setpoints and the feedback parameters were manu-
ally optimized for each imaging. For the smoother A71 and 
A72 samples, multiple topographies were measured with 
scan sizes of 0.512, 1.024, 2.048, 5.12, 10.24, 25.6 μm . For 
the rougher P63 and P64 samples, two additional larger scan 
sizes of 51.2 and 102.4 μm were also included. The scan 
rates used in the measurements are 3 lines/s for scan sizes 
of 0.512 μm , 2 lines/s for scan sizes of 1.024, 2.048 μm , 
and 1 line/s for others. All the measured topography images 
have data points of 512 × 512 pixels. Figure 8 shows AFM 
topography images obtained with setup (b) for rough and 
smooth samples at different scan sizes.

Figure 9 shows the 1D power spectra calculated from the 
AFM topography data obtained with setup (a), for two meas-
urements on the rough surface and one measurement on the 
smooth surface. In all cases, the topography was measured 
in 1024 × 1024 points. Note that the AFM data overlap the 
stylus measurements in the region of common wavenum-
ber. This is a good test which shows that both measurement 
methods are accurate. Note also that the power spectra of 
the two surfaces for wavenumber q > 3 × 107 m−1 (or wave-
length below � = 2�∕q ≈ 200 nm ) appear to be nearly the 
same which may reflect some intrinsic roughness of the 
CrN coating independent of the substrate roughness. This 
is confirmed by AFM at higher resolution (Fig. 8), which 

shows nearly the same topography for the smooth and rough 
surfaces at the highest resolution. Note that the short wave-
length roughness of the substrate (with a wavelength much 
smaller than the thickness of the coating) may not show up 
at the surface of the coating film.

Fig. 8  AFM topography images at different scan sizes for smooth (A71, A72) and rough (P63, P64) surfaces
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Fig. 9  The 1D surface roughness power spectra of the smooth and 
rough surfaces calculated from topography data obtained using an 
engineering stylus instrument (red and blue curves), and AFM setup 
(a). The stylus power spectrum was obtained by averaging the power 
spectra obtained from 3 line scans each 8 mm long. The AFM data 
consisted of 1024 × 1024 data points. For the AFM data, the 1D 
power spectrum was calculated for each z = h(x) line and averaged 
over all the 1024 lines
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Figure 10 shows the 1D surface roughness power spectra 
of the smooth and rough surfaces calculated from topogra-
phy data obtained using an engineering stylus instrument 
(blue curves from Fig. 4), and the AFM setup (b). The stylus 
power spectrum was obtained by averaging the power spec-
tra obtained from 3 line scans each 8 mm long. For the AFM 
data the 1D power spectrum was calculated for each z = h(x) 
line and averaged over all the 512 lines.

4.3  Confocal Laser Scanning Profilometry (CLSP)

The laser profilometry was performed using two different 
instruments: Keyence VK-X1050 and Keyence VK-3000. 
Both instruments have magnifications of 10, 20, 50, and 
100× . A red 661 nm laser beam was used and the pixel num-
ber was 768 × 1024 . Figure 11 compares the C1D(q) results 
from the CLSP to the output from engineering stylus for the 
rough and smooth surfaces.

4.4  Light Interferometry Profilometry (LIP)

A white and green 3D light interferometry profilometer 
Veeco NT-9100, with a 50× magnification was used to 
study the surface topography of smooth and rough samples. 
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Fig. 10  The 1D surface roughness power spectra of the smooth and 
rough surfaces calculated from topography data obtained using an 
engineering stylus instrument (blue curves), and AFM setup (b). The 
stylus power spectrum was obtained by averaging the power spectra 
obtained from 3 line scans each 8 mm long. The AFM data consisted 
of 512 × 512 data points. For the AFM data, the 1D power spectrum 
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rough surfaces calculated from topography data obtained using an 
engineering stylus (red and blue curves), and Light Interferometry 
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The scanned area was 94 × 50 μm2 with the pixel number 
640 × 480 . Figure 12 compares the C1D(q) results from the 
LIP to the output from engineering stylus for the rough and 
smooth wafers.

The optically obtained power spectra in Figs. 10 and 
11 extend to q ≈ 3 × 107 m−1 corresponding to the wave-
length ∼ 0.1 μm . This is shorter than the wavelength of the 
used light and it is clear that the large wavenumber region 
( q > 3 × 106 m−1 ) cannot be trusted. However, our study 
shows that even for much smaller wavenumbers the optical 
methods fail to correctly describe the power spectra.

4.5  White Light Profilomtry (WLP)

We have used a 3D Optical Profilometer (Keyence VR6200) 
to perform non-contact measurement with a stated resolu-
tion of 0.1 μm . Measurements were performed as follows: 
(a) Single scan magnifications of 40, 80, and 120× and scan 
pixel number of 768 × 1024 . (b) Stitch mode at 80× magnifi-
cation at the scan pixel number 1392 × 1418 (rough surface) 
and 1108 × 1283 (smooth surface). Figure 13 compare the 
C1D(q) results from the WLP compared to the output from 
engineering stylus for the rough and smooth wafers.

5  Another Optical Method for Obtaining 
C(q)

We have shown that standard optical methods in general 
do not result in accurate surface roughness power spectra. 
They may approximately describe the long wavelength 
roughness, and may therefore result in good-looking 
topography pictures, but fail for the short wavelength 
roughness. However, for very smooth surfaces with rough-
ness amplitude such that k0hrms < 0.1 , where k0 = 2�∕�0 is 
the wavenumber of the light used, an essential exact way 
exist for obtaining C(q) from light reflection data.

Based on the original work of Rayleigh [37], using first-
order vector perturbation theory, Rice [38] and others have 
shown that for smooth enough surfaces the angular distri-
bution of light scattered from a rough surface depends on 
the surface roughness only via the power spectrum C(q), 
where q is the change in the photon wavevector in the xy-
plane between the incident and reflected (scattered) photon 
beam:

where k is the wavevector of the scattered beam. The inten-
sity of the light scattered into the solid-angle dΩ = sin�d�d� 
is given by [39, 40]

q = k∥ − k
(i)

∥
= (kx − k(i)

x
, ky − k(i)

y
),

where Ii and �i are the intensity of the incident beam and 
the angle of incidence, respectively, and where the factor 
Q depends on the incident and scattering angles and on the 
dielectric constant of the solid. Note the Rayleigh blue-sky 
factor k4

0
.

Assuming small scattering angles, (16) simplifies to

where Is = RIi is the intensity of the reflected beam (R is the 
reflection factor and Ii the intensity of the incoming beam).

We have stated above that the ⟨..⟩ in the definition of 
C(q) stands for ensemble averaging. If no ensemble aver-
aging is performed the C(q) obtained from a single sur-
face area will have some fine-scale noise reflecting the 
particular surface roughness occurring on the studied 
surface area. That is, without ensemble averaging C(q) 
will have fine-scale speckle structure (noise) reflecting the 
surface area used. This speckle noise is well-known to 
anybody who has observed laser light reflected from sur-
faces where the term speckle refers to a random granular 
pattern that can be observed when a highly coherent light 
beam is diffusely reflected at a surface (see Fig. 14). This 

(16)
1

Ii

dI

dΩ
dΩ ≈ 4k4

0
cos�i cos

2� Q C2D(q)dΩ,

(17)
1

Is

dI

dΩ
dΩ ≈ 4k4

0
cos3�i C2D(q)dΩ,

Fig. 14  Laser light is reflected from a rough surface. The random 
granular pattern (speckles) is due to light reflection from the micro-
scopic surface roughness and will look different when the laser beam 
is moved to another nominally identical surface region on the macro-
scopic body under study. The speckles disappear when the incident 
photon beam is incoherent
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phenomenon results from the interference of many differ-
ent reflected portions of the incident beam with random 
relative optical phases. We note that if the incident beam is 
incoherent, speckle effects are automatically averaged out.

One interesting limiting case of (16) is for a one-dimen-
sional (grating-like) roughness profile, z = h(x) , where

Using that

where A0 = L2
0
 is the studied surface area, we get

We substitute this in (16) and integrate over � . To evalu-
ate the �-integral we use that sin�i = 0 (we assume the 
wavevector of the incident beam is in the xz-plane) and 
qy = k0sin�sinϕ so that

Here we have used that sin� = 0 for � = 0 and � = � . Using 
this result in (16) gives

where qx = k0sin�cos� = ±k0sin� since � = 0 or � = � . 
However, C1D(qx) = C1D(−qx) so we may use qx = k0sin� . 
In (19) Q is evaluated for � = 0 . Note that the sin� factor in 
dΩ cancels against the same factor occurring in the denomi-
nator in (17).

If h(x) = h0sin(q0x) we get

h(q) =
1

(2�)2 ∫ d2x h(x)e−iq⋅x

=
1

2� ∫ dx h(x)e−iqxx�(qy) = h(qx)�(qy)

|�(qy)|2 = �(qy)
1

2� ∫ dy e−iqyy =
L0

2�
�(qy),

C2D(q) =
(2�)2

A0

|h(q)|2

=
2�

L0
|h(qx)|2�(qy) = C1D(qx)�(qy)

(18)
∫

2�

0

d� f (�)�(qy) = ∫
2�

0

d� f (�)�(k0sin�sinϕ)

=
∑

�=0,�

f (�)

|k0sin�cos�|
=

f (0) + f (�)

k0sin�

(19)
1

Ii

dI

d�
d� ≈ 8k3

0
cos�i cos

2� Q C1D(qx)d�,

(20)

C1D(qx) =
�

2

h2
0

L0
|�(qx − q0) − �(qx + q0)|2

=
h2
0

4

[
�(qx − q0) + �(qx + q0)

]

=
h2
0

4k0

[
�(qx∕k0 − q0∕k0) + �(qx∕k0 + q0∕k0)

]

Using (19) and (20) gives the angular dependency of the 
scattered light from a sinus-grating.

Since the incident photon beam has the wavevector in the 
xz-plane we have k(i)

x
= k0sin�i and since k(s)

x
= k0sin�s we get

Thus, light incident on this surface profile will scatter in the 
form of a pair of first-order diffraction lines with positions 
determined by the familiar grating equation

where q0∕k0 = �0∕d , where d = 2�∕q0 is the periodicity of 
the grating. The intensity of each of the grating lines are 
∼ (k0h0)

2 relative to the incident intensity. This limiting case 
illustrates that the intensity of the scattered light is deter-
mined by the square of the vertical amplitude of the rough-
ness, while its angular spread is determined by the spatial 
wavelength of the roughness. The latter is easy to understand 
as the momentum is transferred to a photon by the grating is 
ℏq to be compared to the incoming photon momentum ℏk0.

The method described above has been applied success-
fully to obtain information about surface roughness using 
the scattering of laser light [40] and X-rays [41] from very 
smooth surfaces. However, we will now show that even the 
smooth surface studied above appears to be too rough for 
this method to be accurate.

5.1  X‑Rays Reflectivity (XRR)

One of the smooth samples, C13, was analyzed using a Pana-
lytical Empyrean Multipurpose X-ray diffractometer. The 
measurement was taken using Cu ka of wavelength 1.546 Å. 
The incident beam was shaped using a Bragg-Brentano 

qx∕k0 ± q0∕k0 = sin�s − sin�i ± q0∕k0

sin�s = sin�i ± q0∕k0,
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Fig. 15  The measured data (green) and the fitted (blue) specular 
reflectivity. The results for the height fluctuations and the assumed 
film thickness are given in the text
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mirror and the reflected beam was detected using a Pixel-
3D area detector in receiving mode with 1 of 255 channels 
active. Symmetric gonio scans were taken from 0 to 4◦ of 
2� with a step size of 0.005◦ 2� and measurement speed 
of 0.44 s∕step . The data were fitted in X’Pert Reflectivity 
(V1.3) software to estimate the mass density and the rms-
roughness. Figure 15 shows the measured data (green) and 
the fitted model (blue). Assuming a 1.5 μm thick CrN film, 
the density obtained from the fitting was 5.85 gm∕cm3 and 
the roughness was 4.4 nm . Since the X-ray beam width was 
6 mm , covering almost the full wafer dimension along the 
beam direction, the rms-roughness should be compared 
with the one obtained from the engineering stylus which is 
∼ 20 nm . AFM and XRR roughness measurements found 
in the literature show good agreement for surfaces with 
atomic-scale roughness and up to a few nanometers [41]. In 
our case, the smooth wafers appear too rough for the XRR 
method to be accurate.

6  Surface Roughness Parameters

The most complete information about surface roughness is 
the height probability distribution Ph and the surface rough-
ness power spectrum C(q) . In Sec. 4 we showed the power 
spectra, and in Figs. 16, 17 and 18 we show the height prob-
ability distributions. Note that for the rough surface, all the 
stylus measurements give very similar Ph as expected when 
a large roll-off region is included in the measurements [12, 
42]. This is not the case for the AFM data because it does 
not include a roll-off region. For the smooth surface, the 
Dektak stylus instrument gives very strongly fluctuating Ph 
while the Surftest gives a smoother curve which may, in 
part, result from the fact that the Dektak values are averages 
over only 3 lines.

In most engineering applications just one or two param-
eters (numbers) are used, typically the rms roughness hrms 
(or the arithmetic average) or maximum height of rough-
ness Rz , are given to characterize the surface roughness. 
A very large number of surface roughness parameters 
have been defined [43] but in our opinion, only a few are 
really useful, namely hrms and rms slope � , which can be 
obtained as integrals involving C(q) , and the the skew-
ness Ssk and the kurtosis Sku , which can be obtained as 
integrals involving Ph (see Sec. 2). The latter two param-
eters are important because they indicate to what extent 
a surface is randomly rough since in that case Ssk = 0 and 
Sku = 3 . (Note: if there is no roll-off region it is important 
to perform an average over many independent measure-
ments (ensemble average) as otherwise the Ph , and hence 
also Ssk and Sku , will fluctuate widely between different 
measurements.) The rms roughness hrms is important for 
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the average surface separation when two elastic solids are 
squeezed into contact while the rms slope � is important 
in a large number of applications, e.g., for determining 
the area of real contact between two elastic solids. In most 
cases hrms depends mainly on the long wavelength rough-
ness and is hence easy to measure using, e.g., an engineer-
ing stylus instrument if measured over a line long enough 
to cover the roll-off region of the power spectrum. The 
rms slope � depends on the short wavelength roughness, 
and to determine it, one may need to combine AFM with 
engineering line scan measurements to cover all relevant 
length scales.

7  On the Use of Calibration and Filters

Calibration is the comparison between measurement values 
delivered by a device under test with those of a calibration 
standard of known accuracy. For calibration of topography 
instruments, many calibration standards exist but most of them 
just specify the rms roughness (or rather the arithmetic aver-
age) and sometimes the lateral spacing distance in a periodic 
profile e.g., a sinus-like profile. To illustrate the problem with 
this, we show in Fig. 19 the power spectrum of a grit-blasted 
nickel surface which is used as a calibration standard. The sup-
plier of this calibration standard states that it has the arithmetic 
average roughness Ra = 32 μinch or about 0.81 μm . Assum-
ing that the rms-roughness is a factor of (�∕2)1∕2 larger than 
Ra as expected for random roughness, this gives hrms ≈ 1 μm . 
However, from the 20 mm long stylus topography measure-
ment, we obtained hrms ≈ 10 μm . This difference from what 
is expected must be due to the absence of filtering in our study. 
Figure 19 shows that the roughness on the calibration probe 
consists of short wavelength roughness separated by a roll-off 
region from the long wavelength roughness (usually denoted 

waviness), which extends to the linear size of the sample. 
Since the rms roughness hrms usually is determined by the 
most long wavelength roughness components, removing the 
waviness may result in a much smaller rms-roughness in better 
agreement with the quoted roughness value.

To prove this assumption, in Fig. 20 we show the cumula-
tive rms roughness hrms(q) as a function of the small cut-off 
wavenumber q:

Here q1 is the largest wavenumber for which C(q) is calcu-
lated. Figure 20a is obtained from the Surftest stylus, and 
shows that as q decreases towards q0 (the smallest wave-
number for which C(q) was measured) hrms(q) increases 
to ≈ 9 μm . The most useful definition of the roughness 
amplitude excluding the waviness roughness region would 

(21)h2
rms

(q) = 2� ∫
q1

q

dq qC2D(q) = 2∫
q1

q

dq C1D(q)
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cut-off wavenumber. In the calculation of h

rms
(q) only the roughness 

components with wavenumber between q and the large cut-off wave-
number q

1
 (which equals 8 × 106 m−1 for the stylus measurement) is 

included in the calculation. a results using the Surftest stylus, and b 
the same as in a but including results from the Dektak stylus and the 
AFM. Results are obtained using (21) with the power spectra shown 
in Fig. 19
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be the value of hrms(q) in the roll-off region which is about 
∼ 0.5 μm [see Fig. 20b] which is somewhat smaller than the 
quoted roughness. This indicates that the quoted roughness 
must have been obtained with a filter removing most of the 
waviness.

Figure 20b shows the cumulative rms roughness obtained 
from the power spectra of the AFM and Dektak stylus instru-
ments. Note that the Dektak stylus gives a smaller rms-
roughness for small wavenumber q than the Surftest stylus. 
We attribute this to the shorter line scan length in the Dektak 
measurement. Thus, in calculating the power spectra and 
cumulative roughness we have only removed the slope (tilt) 
of the measured data, but not the macroscopic curvature as 
the grit blasted surface was nominally flat. This results in 
a larger long-range variation in the height for the Surftest 
stylus data when compared to the Dektak stylus data. This 
is supported by Fig. 21, where the line scan tracks obtained 
using the Surftest stylus (blue) and the Dektak stylus (green), 
used to calculate the power spectra in Fig. 19, are shown.

Removing the waviness using a filter is a very arbitrary 
and not useful approach as in some applications the long-
wavelength roughness may be very important. This is often 
the case for the leakage of metallic seals, adhesion, or elec-
tric and thermal contact resistance. If information about the 
surface rms-roughness amplitude is important one should 
instead first calculate the power spectrum C(q) (without 
filtering!!), from which one can obtain the rms-roughness 
[using (21)] including all relevant length scales. Similar 
length-scale dependent quantities, such as the rms slope, 
can also be obtained from integrals over C(q) similar to (21).

Figure 19 shows good agreement between the AFM and 
the two stylus measurements, where the small difference 
(for a small wavenumber) between the two stylus results 

can be attributed to the different scan lengths. We have 
observed a similar agreement between the AFM and the 
stylus measurements for three other calibration standards 
where the surfaces were produced by lapping, grinding, 
and turning. In these cases, the stated Ra roughness is 0.05, 
0.05, and 0.4 μm , respectively. But the roughness amplitudes 
we obtained including the waviness were much higher. A 
waviness region will occur on all smooth surfaces because 
it is nearly impossible to produce surfaces that are perfectly 
flat at the macroscopic length scale. This is the case even 
for wafers used in wafer bonding. Thus in Fig. 22 we show 
the cumulative rms roughness with decreasing small cut-
off wavenumber for a Si(100) wafer obtained from AFM 
measurements. In Ref. [45] it was shown that the wafer wavi-
ness had negligible influence on wafer bonding, but in other 
applications, waviness can be very important.

8  Stylus Measurements on Soft Materials

For stylus measurements on soft solids, e.g., soft rubber 
materials, the tip-substrate force can effectively modify the 
real surface topography, as observed in Ref. [24] for sili-
cone rubber (PDMS) where stick-slip occurred. However, 
replicas made with elastically stiff (glassy) polymer on soft 
(or hard) originals can be used to study the topography via 
stylus instruments.

Figure 23 shows schematically how a stylus tip may 
deform the surface of an elastically soft material. This could 
result in a measured topography that differs from the real 
one. However, if the deformations are the same everywhere 
as the tip is scanned over the surface, the measured topogra-
phy will be the same as if the substrate is rigid. To prove it, 
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we have measured the surface topography of a soft (unfilled) 
rubber compound.

Figure 24 shows the surface roughness topography of a rub-
ber stopper used in a syringe. The stopper was produced by 
injection molding with one part of the surface covered by a 
thin ( ∼ 10 μm thick) polyethylene film. The roughness on the 
rubber part (red curve) is nearly the same as on the polyethyl-
ene film (green curve) which indicates that the roughness on 
both surfaces results from the steel mold. A replica of the stop-
per surface made from an elastically stiff epoxy resin has the 
same power spectrum (replica of the rubber part, blue curve) 
as the other two surfaces. This shows that tip-induced elastic 
deformations of the rubber surface have a negligible influence 
on the measured topography.

A similar method was employed in the study referenced in 
[24], where the topography of smooth glass and silicone rub-
ber replicas were measured, revealing significant differences. 
The discrepancy was attributed to stick-slip phenomena, likely 

due to adhesion between the measurement tip and the silicone 
rubber. Compared to the current study, the rubber used for 
the stopper has an elastic modulus ∼ 1.5 times that of the sili-
cone rubber, which is not significantly stiffer. Consequently, 
the difference in elastic modulus is unlikely to be the primary 
cause of the observed discrepancy. However, the silicone rub-
ber replica in [24] was cast from a very smooth surface, unlike 
the rougher surface of the rubber stopper. It is known that 
sufficient surface roughness can eliminate macroscopic adhe-
sion [46], where relevant roughness for this adhesion elimina-
tion corresponds to the roughness with a wavelength shorter 
than the width of the rubber-tip contact region, approximately 
1 �m . We hypothesize that this is the main distinction between 
the two systems. To further substantiate this hypothesis, addi-
tional measurements were conducted on PDMS replicas of 
both smooth and sandblasted PMMA and silica glass surfaces.

Figure 25 shows the surface roughness power spectra of 
PDMS molded against three different surfaces, namely smooth 
PMMA (red), sandblasted silica glass (blue), and sandblasted 
PMMA (green). The power spectra were obtained using the 
Surftest stylus instrument by averaging over two line scans 
each 25 mm long. The solid lines are the power spectra of the 
PDMS replica and the dashed lines are of the originals. For the 
two sandblasted surfaces the PDMS replicas and the original 
surfaces give very similar power spectra, and in particular, 
the power spectra of the long wavelength roughness are well 
reproduced. This is also illustrated in Fig. 26 which shows 
the good agreement in height probability distribution of the 
sandblasted silica glass and PMMA surfaces (green lines) and 
the corresponding PDMS replicas (blue).

It can be observed that the power spectra of the smooth 
PMMA surface and its PDMS replica differ by several orders 

average
undeformed
surface plane

Fig. 23  The stylus tip deforms the material elastically but if the 
deformations are the same everywhere as the tip is scanned over the 
surface, the measured topography will be the same as if the substrate 
is rigid
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of magnitude. Additionally, the obtained height distributions 
are entirely different (see Fig. 27). This indicates that using 
engineering stylus measurements on soft rubbers with very 
smooth surfaces is likely to be unsuccessful. However, on 
surfaces with sufficient roughness, the stylus topography of 
the PDMS replica may be accurate. Nevertheless, consider-
ing our previous results for similar PDMS surfaces, there is 
no certainty that this will always be the case [24].

9  Discussion

We have compared the power spectra obtained from sur-
face topography measurements using different experimen-
tal instruments. We found that stylus instruments (AFM 
and two engineering stylus) give overlapping power 

spectra in the range of roughness length scales common 
to both techniques. The large modulus of the studied sam-
ples, the small tip diameter ( 8 nm for the AFM method), 
and the low contact forces applied in these two techniques 
result in accurate topography profiles and power spectra. 
For the surfaces studied, the power spectra obtained using 
optical instruments differed significantly from the results 
of the AFM and stylus studies. This is consistent with our 
earlier observations [47].

We note, however, that for other types of materials and 
other types of roughness, the optical methods may give use-
ful results. This is illustrated in Fig. 28 where we compare 
stylus and AFM data with the optical LIP method for a 
lapped nickel surface used as a roughness standard.

Studies based on optical methods are fast and give nice-
looking topography pictures, but our study shows that in 
general the relative size of surface structures cannot be 
trusted. We recommend against using optical methods for 
quantitative surface roughness studies.

10  Summary and Conclusion

Analytical contact mechanics theories depend on the surface 
roughness via the surface roughness power spectrum. We 
have shown that height data obtained using optical methods 
are often inaccurate and should not be used for calculating 
surface roughness power spectra, while engineering stylus 
instruments and atomic force microscopy (AFM) generally 
give good results. For surfaces with isotropic roughness, all 
information about the roughness is contained in a line scan if 
it is long enough. For this case, we have shown how the 2D 
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power spectrum C2D(q) can be obtained from the 1D power 
spectrum C1D(q) using different methods.

Appendix A: Power Spectra with Roll‑Off 
Region

We assume that for both the 1D and 2D power spectra there 
is a flat roll-off region for q0 < q < qr and (self affine frac-
tal) power-law behavior for qr < q < q1 . We denote a roll-
off region as flat when the power spectrum is constant. We 
assume q0∕qr << 1 and qr∕q1 << 1 and H > 0 . For this case 
if the 2D power spectrum

for q > qr and

for q < qr then (10) gives

giving

In a similar way to the 1D power spectrum one can show 
that for qr < q

and for q < qr

so C1D is continuous for q = qr.
Suppose we know that C1D is of the form (A3)-(A4). In this 

case, if the 2D power spectrum is of the form (A1)-(A2), then in 
the self-affine fractal region C2D = �qC1D(1 + 2H)∕(1 + H) . 
This relation is not valid in the roll-off region and is not exact 
even for q > qr as we will show below. This implies that if the 
1D power spectrum has a flat roll-off region, this is not the case 
for the corresponding 2D power spectrum.

Assume that the 1D power spectrum is given by (A3)-(A4). 
Substituting (A3) in (13) and writing k = xqr gives for q > qr 
the 2D power spectrum

(A1)C2D = C0

(
q

qr

)−2(1+H)

(A2)C2D = C0

h2
rms

= 2�C0 ∫
∞

qr

dkk

(
k

qr

)−2(1+H)

+ 2�C0 ∫
qr

0

dkk

C0 =
1

�
h2
rms

H

1 + H

1

q2
r

(A3)C1D =
1 + H

1 + 2H
�qrC0

(
q

qr

)−1−2H

(A4)C1D =
1 + H

1 + 2H
�qrC0

and for q < qr we get

For q∕qr << 1 this gives

For q > qr we write

where

In Fig. 29 we show g2(H).
The analysis above shows that if C1D has a self-affine 

region and a flat roll-off region then C2D will have a self-
affine region which differs by a constant factor g2(H) 
from what one would expect if the roll-off region of C2D 
would be flat [compare (A1) with (A7)]. Indeed the roll-
off region close to qr [as given by (A6)] is not perfectly 
flat as shown in Fig. 30. We note that the exact form of 
the roll-off region is usually not very important and for 
most purposes the 2D power spectrum can be obtained 
from (A7) with qr , hrms and H determined from the 1D 
power spectrum. This is equivalent to using the relation 

(A5)C2D = C0(1 + H)

(
q

qr

)−2(1+H)

∫
∞

1

dx
x−2−2H

(x2 − 1)1∕2

(A6)C2D = C0(1 + H)∫
∞

1

dx
x−2−2H

(x2 − (q∕qr)
2)1∕2

C2D = C0(1 + H)∫
∞

1

dx x−3−2H =
1

2
C0

(A7)C2D = C0

(
q

qr

)−2−2H

g2(H),
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∞

1

dx
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C2D = f2(H)C1D∕(�q) with f2(H) = g2(H)(1 + 2H)∕(1 + H) 
and a constant in the roll-off region given by C2D(qr).

In Sec. 3 we studied the power spectrum of a rough sur-
face which was generated using the power spectrum with 
a 2D power spectrum with a flat roll-off. In this case, the 
1D power spectrum does not have a perfectly flat roll-off 
region but instead shows a region close to qr with reduced 
magnitude (see Fig. 2). This result also follows from the 
related relation (14) as we now will show.

Assume that the 2D power spectrum is given by (A1)-
(A2). Using (A1) and (A2) in (14) and writing k = xqr 
gives for q > qr the 1D power spectrum

and for q < qr we get

For q∕qr << 1 this gives

The analysis above shows that if C2D has a self-affine region 
and a flat roll-off region then C1D will have a self-affine 
region that differs by a constant factor g1(H) from what one 
would expect if the roll-off region of C1D would be flat [com-
pare (A3) with (A11)]. Indeed the roll-off region close to qr 
[as given by (A11)] is not perfectly flat as shown in Fig. 31.

For q > qr we write

(A9)C1D = 2C0qr

(
q

qr

)−1−2H

∫
∞

1

dx
x−1−2H

(x2 − 1)1∕2

(A10)

C1D = 2C0

[(
q2
r
− q2

)1∕2
+ qr ∫

∞

1

dx
x−1−2H

(x2 − (q∕qr)
2)1∕2

]

(A11)C1D =
4

�

1 + H

1 + 2H
�qrC0

where

W e  w r i t e  C1D = f1(H)�qC2D  w i t h 
f1(H) = g1(H)(1 + H)∕(1 + 2H) and a constant in the roll-
off region given by C1D(qr) . In Fig. 29 we show 1∕g1(H) 
and 1∕f1(H) . Note that 1∕g1 ≈ g2 and 1∕f1 ≈ f2 ≈ (1 + 3H)1∕2 
Hence we can use the relation C2D = f (H)C1D∕(�q) with 
f (H) ≈ (1 + 3H)1∕2 to calculate C2D in the self-affine fractal 
region when C1D is given (with a flat roll-off region), and 
also to calculate C1D in the self-affine fractal region when 
C2D is given (with a flat roll-off region). In practical applica-
tions only the first application is relevant.
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