001     1035000
005     20250912110200.0
024 7 _ |a 10.1021/acsnano.4c13934
|2 doi
024 7 _ |a 1936-0851
|2 ISSN
024 7 _ |a 1936-086X
|2 ISSN
024 7 _ |a 39810379
|2 pmid
024 7 _ |a WOS:001387068800001
|2 WOS
037 _ _ |a FZJ-2025-00106
082 _ _ |a 540
100 1 _ |a Bae, Yujeong
|0 0000-0002-9983-8529
|b 0
|e First author
245 _ _ |a Direct Observation of Fully Spin-Polarized Tunnel Current Between Quantum Spins Using a Single Molecule Sensor
260 _ _ |a Washington, DC
|c 2025
|b Soc.
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1754563532_26205
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Controlling spin-polarized currents at the nanoscale is of immense importance for high-density magnetic data storage and spin-based logic devices. As electronic devices are miniaturized to the ultimate limit of individual atoms and molecules, electronic transport is strongly influenced by the properties of the individual spin centers and their magnetic interactions. In this work, we demonstrate the precise control and detection of spin-polarized currents through two coupled spin centers at a tunnel junction by controlling their spin–spin interactions. We attach a nickelocene (Nc) molecule to a scanning probe tip and place it over a spin center (either an Fe atom or another Nc molecule) located on a surface. By changing the adsorption orientation of Nc at the tip apex and adjusting the tip–sample distances, we control the wave function overlap between two spin systems, resulting in strong changes in their magnetic exchange coupling, quantum spin states, and spin excitation energies. Coupling the Nc molecule to the surface spin induces exchange-split spin states, enabling the quantitative determination of the spin polarization of tunnel currents. Strongly asymmetric tunneling spectra reveal almost 100% spin-polarized currents through the coupled Nc-Fe spin system. Our findings highlight the potential of these spin systems at the tunnel junction for high-performance spin-based devices engineered at the atomic scale.
536 _ _ |a 5213 - Quantum Nanoscience (POF4-521)
|0 G:(DE-HGF)POF4-5213
|c POF4-521
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Ternes, Markus
|0 P:(DE-Juel1)174438
|b 1
700 1 _ |a Yang, Kai
|0 P:(DE-Juel1)180575
|b 2
700 1 _ |a Heinrich, Andreas J.
|0 0000-0001-6204-471X
|b 3
700 1 _ |a Wolf, Christoph
|0 P:(DE-HGF)0
|b 4
|e Corresponding author
700 1 _ |a Lutz, Christopher P.
|0 P:(DE-HGF)0
|b 5
|e Corresponding author
773 _ _ |a 10.1021/acsnano.4c13934
|g p. acsnano.4c13934
|0 PERI:(DE-600)2383064-5
|n 1
|p 1361–1370
|t ACS nano
|v 19
|y 2025
|x 1936-0851
856 4 _ |u https://juser.fz-juelich.de/record/1035000/files/Post-Print.pdf
|y Restricted
909 C O |o oai:juser.fz-juelich.de:1035000
|p VDB
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 0
|6 0000-0002-9983-8529
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)174438
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 2
|6 P:(DE-Juel1)180575
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 3
|6 0000-0001-6204-471X
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 4
|6 P:(DE-HGF)0
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 5
|6 P:(DE-HGF)0
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-521
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Quantum Materials
|9 G:(DE-HGF)POF4-5213
|x 0
914 1 _ |y 2025
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2023-10-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2023-10-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2023-10-25
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2023-10-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2023-10-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2023-10-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2023-10-25
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b ACS NANO : 2022
|d 2023-10-25
915 _ _ |a IF >= 15
|0 StatID:(DE-HGF)9915
|2 StatID
|b ACS NANO : 2022
|d 2023-10-25
920 1 _ |0 I:(DE-Juel1)PGI-3-20110106
|k PGI-3
|l Quantum Nanoscience
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)PGI-3-20110106
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21