

The DEEP-SEA Project -**Concept and Achievements**

EuroHPC Summit Week, Antwerp, March 18-21, 2024

The road to Exascale was longer than expected

Top #1: HPL Rpeak [PFLOP/s]

Principal Challenges

- Extreme application parallelism
 - Up to billions of individual execution threads

DEEP-SEA

- Truly scalable supercomputers
 - Interconnects must handle huge numbers of endpoints with highest performance & reliability
- ➤ Energy efficiency
 - Use of accelerators and beneficial scale for all applications
 - Energy-oriented scheduling & management

DEEP-SEA

DEEP-SEA

- Memory and storage
 - Growing performance gap between compute and memory & I/O throughput

DEEP-SEA

- Support of workload diversity
 - Wide variety of HPC, Al and data analytics workloads

DEEP-SEA

RED » SEA

≥IO-SEA

DEEP-SEA

Composability of heterogeneous resources

- Cost-effective scaling
- Effective resource-sharing
- ➤ Supports HPC / ML / AI / Big Data workloads

EuroHPC Summit Week 2024

≥IO-SEA

IIDEEP-SEA

Comprehensive, Integrated, Exascale-Ready

Public release at https://gitlab.jsc.fz-juelich.de/deep-sea/ easybuild-repository-public-release

Heterogeneous Memory Support

- Combine fast (HBM) with conventional (DDR) memory
- ➤ DEEP-SEA tools support
 - Restructuring of applications (OpenMP)
 - Tool-guided optimization of applications (ecoHMEM)
 - Automatic use by unmodified code

≥IO-SEA

Optimisation Cycles Guiding HPC SW Developers

Many SW tools available to HPC SW developers for analysis and optimisation – in DEEP-SEA, these:

Score-P scalasca 🗖 Extra-P

Extra-P MemAxes BDP0

Extrae/Paraver MUSA PROFET PARCOACH

- Optimisation cycles capture tool workflows for specific purposes
- They guide SW developers and make it easier to achieve specific goals
 - Like improving load balance or reducing energy to solution

Malleability and Dynamic Resource Allocation

- Use of resources varies over time (yellow curve)
- Constant allocation of resources (blue)

- Improved dynamic allocation of resources (green)
- Malleable applications can request or shed resources
- MPI & Slurm prototype for enabling application-driven malleability

IIDEEP-SEA

≥IO-SEA

5

Earth Modelling

Important Real-World Co-Design Applications

Neutron Transport

Funding Acknowledgement

CFD

The DEEP-SEA Project has received funding from the European High-Performance Computing Joint Undertaking (EuroHPC JU) under grant agreement n° 955776.

The EuroHPC JU receives support from the European Union's Horizon 2020 research and innovation programme and Germany, France, Spain, Greece, Belgium, Sweden, Switzerland.

SPONSORED BY THE

IDEEP-SEA

≥IO-SEA

