

The SEA Projects

Hans-Christian Hoppe, Jülich Supercomputing Centre / ParTec AG

ISC 2024, May 14, 2024

HPC Performance Evolution – Slower than Expected

Top #1: HPL Rpeak [PFLOP/s]

1997: First **1TFlop/s**

computer:

(ASCI Red/9152)

2008: First **1 PFlop/s**

computer: (Roadrunner)

So.... First 1 EFlop/s

computer: 2018 !!

Well... not really

It took 4 years longer....

2022

for Frontier to appear

Years

Exascale Challenges Addressed

Application parallelism

- Applications must support billions of individual threads
- Lower-scaling applications / parts of applications should not run on a full Exascale system

Truly scalable systems

- Huge numbers of devices need to exchange data with each other
- Collective communication operations are "slowing down" due to larger system sizes
- Network contention and reliability become worries

Energy efficiency

- Accelerators clearly beat CPUs for many (most?) codes
- System heterogeneity is a must
- Yet portable accelerator programming is hard

Memory and storage

- Ever growing gap between compute throughput and memory bandwidth
- New technologies like HBM suffer from capacity limitations & high energy consumption

Workload diversity

- Exascale centers must run a wide variety of HPC, AI and data analytics workloads with highest energy efficiency
- One size does not fit all

The SEA Projects (April 2021 – March 2024)

ITWM

Central European Institute of Technology BRNO | CZECH REPUBLIC

an atos business

INFŃ

Leibniz-Rechenzentrum der Bayerischen Akademie der Wissenschaften

IT4INNOVATIONS
NATIONAL SUPERCOMPUTING
CENTER

Modular Supercomputing Architecture

E. Suarez, N. Eicker, T. Moschny, S. Pickartz, C. Clauss, V. Plugaru, A. Herten, Kristel Michielsen, T. Lippert, "Modular Supercomputing Architecture – A Success Story of European R&D", ETP4HPC White Paper (2022)

https://www.etp4hpc.eu/white-papers.html#msa.

Composable heterogeneous resources

Software stack and programming model for Exascale heterogeneity

I/O Software stack for Exascale

Network solutions for Exascale systems

The SEA Projects

E. Suarez, N. Eicker, Th. Lippert, "Modular Supercomputing Architecture: from idea to production", Chapter 9 in Contemporary High Performance Computing: from Petascale toward Exascale, Volume 3, p 223-251, CRC Press. (2019)

Acknowledgements

You can learn more on the SEA projects in the next three presentations and at these Websites

https://sea-projects.eu/

https://deep-projects.eu/

https://iosea-project.eu/

https://redsea-project.eu/

