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Abstract

Recent developments and research in modern machine learning have led to
substantial improvements in the geospatial field. Although numerous deep
learning architectures and models have been proposed, the majority of them
have been solely developed on benchmark datasets that lack strong real-world
relevance. Furthermore, the performance of many methods has already sat-
urated on these datasets. We argue that a shift from a model-centric view to
a complementary data-centric perspective is necessary for further improve-
ments in accuracy, generalization ability, and real impact on end-user appli-
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cations. Furthermore, considering the entire machine learning cycle—from
problem definition to model deployment with feedback—is crucial for en-
hancing machine learning models that can be reliable in unforeseen situa-
tions. This work presents a definition as well as a precise categorization and
overview of automated data-centric learning approaches for geospatial data.
It highlights the complementary role of data-centric learning with respect to
model-centric in the larger machine learning deployment cycle. We review
papers across the entire geospatial field and categorize them into different
groups. A set of representative experiments shows concrete implementation
examples. These examples provide concrete steps to act on geospatial data
with data-centric machine learning approaches.

Keywords: data-centric machine learning, data quality, review, data
curation, data valuation

1. Introduction

Remote sensing data is a central link between pressing global challenges
and the possibilities of machine learning methods. To realize its full potential,
a deep understanding of the data and its utilization possibilities is essential.
Generally, data plays a fundamental role in the machine learning (ML) cycle
with steps from informing (1) problem definition, (2) data creation, (3) data
curation, enabling (4) model training, and (5) evaluation to (6) the even-
tual model deployment that feeds back to modifying the problem definition.
We show this cycle in Fig. 1 where each node is colored by its focus of be-
ing problem-centric (dark gray), data-centric (blue), or model-centric (dark
green). Yet, current research in machine learning is predominantly model-
centric and focuses on model design and evaluation (Step 4). This primarily
emphasizes optimizing the accuracy and efficiency of the models themselves
[1, 2, 3] and considers the dataset rather as a static benchmark than a dy-
namic representation of the application. Even in applied machine learning
areas such as geospatial data analysis, the research towards integrating new
machine learning methods has recently largely focused on refining the algo-
rithms and fine-tuning the model parameters [4]. Data-centric aspects like
data acquisition (Step 1) and curation (Step 2) are done manually to a large
degree and data quality is rarely considered. At the same time, most domain
expertise remains concentrated in classic feature engineering.
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Figure 1: Steps of the machine learning cycle. Each step highlights one way to interact
with data and its quality, and each step can employ multiple techniques to perform the
interaction (see Section 3). It involves problem definition, data creation and curation,
model training and evaluation, and final deployment, which feeds back into a modified
problem definition. Model-centric learning focuses primarily on model training and eval-
uation, while data-centric learning involves algorithms covering data curation, creation,
specific training strategies, evaluation, and deployment feedback. The considered quality
criteria are diversity and completeness, accuracy, consistency, unbiasedness, and relevance,
see Section 2).

. o 3§
p O &
informa® Yo quaiity

The rapid development of machine learning methods has been primar-
ily driven by the availability of large-scale datasets and advancements in
computing power [5, 6]. This has allowed researchers to focus on develop-
ing complex models capable of capturing patterns and relationships within
the data. However, many developments have been pursued in controlled
benchmark settings only, where the natural variability and real-world char-
acteristics of the data are bypassed. In the geospatial domain, for example,
this is achieved through a one-time pre-defined data location sampling, as
seen in the predefined regions of the Sen12MS dataset [7], or through class-
balancing techniques commonly used in crop-type mapping [8]. Although
the great importance of these benchmarks should not be diminished, as a
result, many methods developed are often detached from reality and seldom
robust in real-world deployment. This requires considering all steps in the
machine learning pipeline and acknowledging it as a cycle (Fig. 1), as well as
a high degree of robustness for acquisition specification and generalization to
diverse shifts.



Despite the availability of enormous amounts of data [6], including well-
curated benchmarks, and significant progress made through methodological
advances, there is currently a saturation point where many established ar-
chitectures and training methods achieve comparable accuracy ([9], 2023 Al
Index Report!). This is exemplified by foundation models or general-purpose
computing architectures for multiple modalities and tasks [10, 11, 12, 13].
These large-scale models, trained on massive but mainly domain-agnostic
datasets, increasingly replace modality-specific recurrent and convolutional
models. This development comes with the prevailing belief that "more data
is better”. However, the reality is more complex. While larger datasets can
provide a broader representation of real-world scenarios, foundation models
require adaptation through downstream models tailored for specific applica-
tions through fine-tuning datasets that can be substantially smaller in size.
Still, the smaller the size, the more important the data quality becomes, as
noisy labels and other errors can have increasingly detrimental effects on final
accuracy. In this direction, it has already been argued that in addition to
the quantity of data, the quality is a significant factor in model performance
across various domains [14, 15, 16, 1, 17, 18]. That means that not all data
samples contribute equally to model learning and generalization. In fact,
indiscriminately increasing data volume can lead to diminishing returns or
even detrimental effects on model performance. The assumption that more
data inherently leads to better outcomes overlooks the complexities of data
distribution, the potential for introducing biases, spurious correlations, and
the computational resources required for processing and storing vast datasets
[19, 20]. Moreover, many scientific disciplines, particularly those reliant on
experimental data, face significant data scarcity. In these domains, the em-
phasis is on quality rather than quantity, as each data point is meticulously
collected and holds substantial scientific value. Therefore, while foundation
models represent a leap forward in Al capabilities, the general belief that
"more data is better data” does not fully address the complexities of real-
world applications. Effective solutions require an approach that considers
both the quality and quantity of data, as well as the adaptability of models
to specific tasks and domains.

However, a number of challenges need to be overcome before this can
be turned into actions. The notion of data quality and its specific crite-
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ria is only vaguely defined yet and can differ depending on the domain and
task. In the geospatial domain, we have identified five criteria especially rele-
vant to machine learning: diversity and completeness, accuracy, consistency,
unbiasedness, and task-relevance, which will be discussed in this paper. Au-
tomating to interact with the data regarding their quality in each step in the
machine learning cycle is crucial. This is especially important when dealing
with training and evaluation datasets that are too large for traditional visual
refinement and manual data manipulation. The importance of shifting to a
more data-centric perspective is also underlined by the growing demand for
methods that are robust to noise [21, 22] or missing data [23, 24, 25], or that
are specifically designed to handle data quality deficiencies. Here, it becomes
clear that assessing and optimizing data quality is crucial in addressing real-
world data challenges. However, such methods represent only one way to
interact with data regarding their quality (Step 4: use quality information
during model training).

This article offers a systematic discussion of data-relevant aspects of the
machine learning cycle in the context of geospatial data. It has the goal of
fostering awareness about the benefits of optimizing geospatial data alongside
new methods of research. Within the scope of this paper, we use the term

data-centric learning as a paradigm focusing on the systematic, au-
tomated, and algorithmic determination, as well as the utilization of a
rich and high-quality dataset, including a rigorous evaluation process to
ensure that the model performs optimally on the dataset for the intended
task.

In contrast, model-centric learning focuses on the optimization of the
model parameters that include trainable parameters and hyperparameters,
such as the model design, as well as the learning objective as a loss function.
It also focuses on the definition of evaluation metrics to measure the model’s
performance with respect to a static evaluation dataset.

The article is organized as follows: It first clarifies the terminology, defi-
nitions, and goals of data-centric and model-centric learning (Section 2) and
then provides a comprehensive discussion of data-centric machine learning
and its steps, with a focus on the analysis and interpretation of geospatial
data. Additionally, it presents a systematic review of data-centric machine
learning techniques tailored explicitly to geospatial data (Section 3), facilitat-



ing the learning and evaluation of high-performing machine learning models
(see Fig. 1). The paper is supported by three experiments using data-centric
machine learning techniques, presented in Section 4.

2. Definitions and Terminology

This section describes the machine learning cycle, provides definitions of
data-centric and model-centric learning, and details the pursued data quality
criteria. We refer to data as a set of individual raw samples and their targets,
where a data sample may be assigned to one or more targets.

2.1. Machine learning cycle

The machine learning cycle, illustrated in Fig. 1, involves the following
sequential steps that may be iterated following the entire circle or within
intermediate steps:

1. Problem definition. Definition of the underlying objectives by lever-
aging problem-centric expertise through domain knowledge. Method-
ologically, this step defines the ML task, e.g., classification or regres-
sion, the method, data type and sources based on the application’s
goals, needs, and restrictions.

2. Data creation. Generation or collection of data from various sources.
This includes manually collecting data through surveys or measuring
instruments, automatically acquiring sensor data, systematically and
algorithmically scraping data from the Web, or generating data using
generative models.

3. Data curation. Utilizing curation strategies to obtain high-quality
data and prepare data for modeling. This can be done through outlier
filtering, label noise identification and reduction, or de-biasing data
with respect to relevance to, for instance, the region of interest.

4. Model training and hyperparameter tuning. Learn and fine-tune
a model utilizing the curated data for training and validation. This
involves choosing the model architecture and objective function.

5. Evaluation. Applying the machine learning model to evaluation data
to assess model performance. This involves, in close connection to
Steps 1 and 2, the creation and curation of evaluation data or defining
a suitable test split that may be spatially distant from training areas.
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6. Model deployment, monitoring, and feedback. Continuously
monitoring the trained model regarding its performance in previously
unknown real-world applications and giving feedback to improve the
data and the model. This step generates feedback from the model
deployment and the monitoring to inform about changed needs and
goals and to improve the overall process.

Within the cycle, data-centric learning focuses on Steps 2: Curation, 3: Cre-
ation, 5: Evaluation, and 6: Deployment. In contrast, model-centric learning
involves Steps 4: Model training and 5: Evaluation in terms of metric defi-
nitions.

2.2. High-quality criteria for geospatial data

While model-centric learning approaches focus on the optimization of per-
formance on a static evaluation set, data-centric approaches focus on a series
of quality criteria of the data used. We identified five criteria that are defined
in the following. We further indicate whether each criterion is typically con-
sidered at a global (dataset-wide) level or a local (individual data sample or
subset) level. Please note that some criteria have already been pointed out
or other criteria might be more important in specific applications (e.g., [26]).
Moreover, criteria can be closely connected or partly overlap in specific set-
tings, however, we consider them as distinct concepts that describe different
characteristics of the data. This is demonstrated, for example, by the fact
that if one quality criterion is high, other criteria do not automatically have
to be high as well. We consider the data to be observations and labels and
do not make an explicit distinction here.

e Diversity and completeness (global). Completeness refers to the
extent to which all necessary data samples are present within the
dataset. It involves ensuring that there are no missing data points and
that the dataset includes all relevant information required for the spe-
cific task. In the geospatial domain, completeness is critical as missing
data can arise due to sparse data acquisition, multimodal fusion with
different resolutions, or challenges in gathering information from differ-
ent sensors. Techniques to measure completeness include data coverage
analysis and gap analysis, while metrics can include the percentage of
missing values and the spatial coverage ratio. Closely related, diversity
pertains to the inclusion of a wide range of data samples that represent



various scenarios and variations, enabling ML models to handle various
real-world scenarios [27]. In the context of geospatial data, this means
including data from various geographic areas, different times, and mul-
tiple sensor types to capture the full range of potential conditions. It
is important to consider diversity within the context of completeness,
which ensures that all necessary information is covered without impor-
tant details missing.

e Accuracy (local). Data accuracy indicates how closely the data val-
ues align with the true or expected values. It quantifies the correctness
and precision of the data, accounting for any errors or deviations that
might occur during data collection. In the geospatial domain, accu-
racy is influenced by factors such as random variations or errors during
data acquisition, sensor precision, environmental conditions, and data
processing techniques [28]. Additionally, human errors in generating
reference labels [29], or situations where the phenomenon targeted by
machine learning models is conceptually ambiguous, such as identifying
informal settlements from satellite imagery [30] or classifying wilder-
ness [31, 32|, contribute to uncertainty. Accuracy can be, for example,
assessed by repeated measures or comparing the data against reference
values.

e Consistency (local and global). Consistency, locally, refers to the
uniformity of properties or attributes of single data samples within
one dataset and across multiple datasets. Globally, it ensures that the
dataset maintains uniformity in terms of data formatting, units, and
definitions across all samples. For geospatial data, consistency is crucial
when integrating data from different sources, such as varying coordinate
systems or temporal resolutions. In the case of machine learning tasks
for geographic data, ensuring consistency is critical during the process
of annotating samples for training models [33, 34].

e Unbiasedness (global). Unbiasedness measures the extent to which
data is free from systematic errors and and consistent deviations. An
unbiased dataset accurately reflects the true values and distributions
without any systematic over- or underestimation. In the geospatial
domain, biases can be manifold [14]. For example, acquiring data is
generally easier in data-rich geographic areas such as Europe or North
America. However, it can be much more challenging in other continents
with limited data availability, which can introduce bias [14, 27].

e Relevance (local). Relevance denotes how applicable and suitable
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a data sample is for the specific task or problem being addressed. It
assesses the alignment of the data with the requirements and objec-
tives of the analysis or model. For geospatial data, relevance involves
ensuring the data is up-to-date and reflect the present conditions of the
Earth. As already pointed out by [2], datasets and models need to be
updated continuously to be relevant.

Generally, having measures for the data quality allows quantifying the
goodness of a single sample (locally) or the whole dataset (globally) with re-
spect to a given criterion, which provides the user with intuition and builds
the basis for actions in data-centric approaches. A measure also helps identify
issues in the dataset that would hinder the development of a well-performing
model. Once the quality is quantified, specific steps can be taken to address
the identified issues and modify the dataset. Quality measures serve as a
guide for creating, collecting, enhancing, and curating the data. Addition-
ally, a quantitative measure enables us to prioritize the steps involved. Ex-
isting approaches to quantify the quality (value) of data can be divided into
label-based [35, 36] and label-free approaches [37]. Label-based approaches
typically evaluate the effect that a given sample has on the validation loss.
In contrast, the label-free approaches leverage inherent data characteristics
to assign values according to the desired quality criteria. While a quantifica-
tion of quality can find direct applications in the form of data marketing [38],
it more often is used to facilitate downstream tasks such as active learning
[39] or data cleaning [35], where the value is used to select relevant or prune
irrelevant data samples.

3. Data-centric machine learning techniques

In this section, we thoroughly review the literature and present data-
centric techniques for the machine learning Steps 2-5 with a specific focus
on geospatial remote sensing data. We skip Step 1, since it mainly contains
manually performed actions, and we skip Step 6 since it mainly is concerned
with the feedback loop. We group and structure these techniques in Fig. 2
with respect to the mentioned quality criteria. Each step in the machine
learning cycle interacts with data in a specific way regarding its quality. This
includes acting on data quality, using quality information, assessing quality,
and considering the quality. The review aims at consolidating knowledge
helping to quickly understand the current state of the field, building the
basis for dentifying gaps and opportunities for future research.
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3.1. Data Creation (Step 2)

Data creation, whether through collection or generation, directly acts on
the data quality. It serves two distinct purposes: firstly, high-quality train-
ing data supports the model learning process, while secondly, high-quality
evaluation data enhances the information content to provide deeper insights
into the model’s capabilities (see also Step 5: Model evaluation).

Diversity and completeness. Fostering diversity and completeness
are closely related to the sampling scheme, which should ensure heterogene-
ity, such as across different geographic regions (spatial diversity) or related
environmental conditions, for example, to seasonal variations (temporal di-
versity). Measuring the heterogeneity of samples in geospatial applications
can be based, for example, on spectral similarity [86, 87] or morphological
image characteristics [88]. Wesley et al. [97] propose the Geospatial Incep-
tion Score, which considers diversity as a function of the co-occurrence of
samples, their variety, and their context. Another measure is presented by
Xu et al. [37], who propose a quantification of diversity in terms of the vol-
ume of the data matrix (determinant of its left Gram matrix). A sample’s
contribution to diversity can then be measured via the increase in volume
when adding it to the existing dataset. Generally, sampling schemes should
be designed to cover the expected diversity of the classes and to avoid biases.
For example, stratified random sampling is a long-standing good practice
in geospatial applications [82, 83]. Further efforts to improve diversity and
completeness involve techniques to merge data from multiple sensors (e.g.,
optical, radar, LiDAR, or thermal) and collecting data at different spatial
scales to create more comprehensive datasets [85, 89, 85, 84]. This ensures
that data encompasses a wide range of features, supporting an understand-
ing of the geographical area under study. However, research in this direction
has so far been the exception rather than the rule and a close interaction
with model-centric developments is necessary to find suitable strategies to
integrate multi-resolution, multi-temporal, and multi-spectral data in a joint
framework [14, 98].

Moreover, it is not always feasible to collect a sufficient amount of data.
This is particularly the case if the reference data is collected via in-situ mea-
surements which is often time-consuming and a high effort [99]. To address
this limitation, data augmentation has become a prominent data-centric tech-
nique. This technique involves artificially increasing the size of the dataset by
applying various geometric and spectral transformations to the input data
samples [78]. Also, generative adversarial networks (GANs) and diffusion
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models are increasingly used to generate synthetic data samples and augment
the existing data. This helps to diversify the dataset by creating samples co-
herent with the original data distribution [80, 81, 79]. Although the general
concepts are promising, research gaps comprise the kind of augmentation to
ensure a physically consistent model and the capturing of powerful features
from the data [100, 101].

If a learned model is already available, it can be used to acquire new
data through self-training [77]. In self-training, the trained model is used
to classify unlabeled samples, and the predictions are used as pseudo-labels.
Samples with their pseudo-labels are then converted into labeled training
data based on specific quality criteria. Another technique is active learning
[91]. Here, the focus is on identifying unlabeled data samples that would
be most useful and should be added to an existing dataset. The labeling is
performed manually, a process known as human-in-the-loop. Used metrics
in this context are the Most Ambiguous and Orthogonal (MAO) metric [93]
and angle-based diversity [92] that utilizes the angle between two samples
in a feature space to measure diversity. However, the selection of samples
is still an open research question [102] and current research point towards a
necessity to use multiple quality criteria beyond diversity and completeness,
so far mainly focusing on uncertainty.

Accuracy. Fang et al. [94] employ confident learning [103] to select
high-confident training samples in a domain adaptation setting from a set of
pseudo-labeled samples in the target domain scene. The confidence of the
labels is assessed by comparing their reference label with the estimated score
for that label. A remaining challenge, however, is the notion of data accu-
racy and confidence and their disentanglement from model uncertainty, with
uncertainty quantification being a research area gaining increased attention
[28]. Bastani et al. [104] conduct iterative analyses during the design of
their SATLASPRETRAIN dataset to evaluate the precision and recall of la-
bels collected from various sources (e.g., manually labeled and from existing
products). This process helps improve the overall quality of the labels. Ad-
ditionally, they provide information on the accuracy of the categories deter-
mined during dataset creation. With knowledge about the problem-specific
patterns, label refinement strategies can be employed, for example, by im-
proving coarse hand-annotations. Here, for instance, Ruffiwurm et al. [105]
designed a simple computer vision pipeline to refine coarse hand-labels of
floating plastic marine debris from Sentinel-2 images. This label refinement
improved the overall model accuracy of the segmentation model.
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Consistency. Data consistency is maintained by implementing rigorous
data collection procedures, which include standardizing measurements or la-
beling procedures, and quality control measures. Ensuring data consistency
can be particularly challenging when multiple experts label reference data,
such as through crowdsourcing platforms [106]. While online crowdsourcing
platforms like OpenStreetMap (OSM) facilitate the labeling of many sam-
ples, the data quality is not always guaranteed, which leads to consistency
issues [56]. To address this, the level of agreement among labelers is often
used as a measure of consistency. For example, Fenza et al. [33] mention
that simple measures, like the ratio of agreeing labelers to all labelers, can
be used as an indicator of consistency. This measure can be further adjusted
by considering the uncertainty and reliability of the labelers [95]. Future
directions and research gaps have been identified, for example, by Saralioglu
and Gungor [107].

Unbiasedness. Data creation imposes three types of bias: historical
bias, representation bias, and measurement bias [14, 108]. Influencing fac-
tors for the choice of specific sampling strategies may include logistical and
practical reasons for in-situ data collection. For example, as mentioned by
Fowler et al. [99], in-situ crop-type labels are often collected in close proxim-
ity to roads. Even though diversity and completeness can be of high quality,
biases can occur. Self-supervised learning methods like seasonal contrast [58],
for example, take special care in sampling (unlabelled) images geographically
according to some distribution (e.g., population density) to cover all possible
representations of the world. A naive uniform sampling, though ensuring
diversity to a high extent, would generate too many examples over repetitive
uninformative areas like deserts or oceans. It is important to note that class
imbalance in training data is a common challenge in geospatial data, which
can cause the model to have a bias towards the majority class in classification
tasks. This imbalance may naturally occur in some geospatial applications,
where the distribution of objects or features in the studied geographic area
leads to imbalanced classes. For example, in land cover classification, urban
areas may be a minority class compared to forests or water bodies. Finally,
measurement bias is related to how the labeling scheme is conceptualized.
For example, because of the ambiguity of the class definitions, rules for label-
ing will always introduce bias in how objects are identified. This cannot be
avoided but should be clearly communicated. Assessing and mitigating biases
is a so far underrepresented research area, which however gained attention
with the movement from local to global models [14].
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Relevance. Without an existing model, there are limited works that
consider a relevance measure for data creation. Instead, other quality crite-
ria are primarily used. As a result, the collection of relevant data heavily
relies on the decisions made in the problem definition step (Step 1). An
approach to improve data relevance is tested in Ruwurm et al. [90], who
aimed to improve urban settlement detection in Mozambique and Tanzania
by dynamically sampling training data of urban areas in proximity to the
study region.

To quantify the relevance of data to a given task when a model is available,
one direct approach is the ”leave-one-out” method [109], where the model’s
performance, trained on the entire dataset, is contrasted with the model’s
performance when a particular data point is excluded. The difference in
performance can then be interpreted as the data point’s relevance for the
task. However, computing such values for all data points using this method
can be excessively resource-intensive. A more efficient alternative to address
this challenge is the use of influence functions [110, 111], which assess the
influence of a specific sample on the model’s parameters when that sample’s
weight is increased. To further address the complexity of sample interactions,
the concept of Data Shapley has emerged [35], drawing inspiration from
Shapley values. Data Shapley provides a more comprehensive framework
for evaluating the value of individual data points in a dataset and efficient
data Shapley approaches have been proposed [112]. However, such methods
have not been used for geospatial data so far. In the context of incremental
learning in the geospatial domain, Roscher et al. [96] uses the classification
model to identify relevant samples based on their ability to help the model
to adapt to the new data. More techniques that rely on an existing model
are discussed in Section 3.3.

3.2. Data Curation (Step 3)

Data curation refers to the systematic and algorithmic refinement of a
created dataset. We specifically focus on techniques that remove or correct
data. The main objective is to improve data quality, which in turn should
benefit model efficiency, accuracy, and generalizability. Similar to the data
creation step, the data curation step directly impacts the quality of the data
according to our defined criteria.

Diversity and completeness. A commonly used set of techniques is
the filling of gaps in spatial and temporal coverage, as missing data is a com-
mon problem and causes different issues such as performance degradation,
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problems in data analysis, and biased outcomes [113]. Besides classical in-
terpolation strategies, a recent approach is the use of generative models like
generative adversarial networks. Luo et al. [64], for example, impute data
in one-dimensional time-series signals and outperform classical methods, and
Dong et al. [65] perform inpainting in sea surface temperature images where
clouds cover the scene. Another set of techniques that impute missing data
is superresolution [68].

Accuracy. One of the most commonly used sets of techniques is data-
cleaning, which specifically focuses on data accuracy and consistency [18].
Data-only unsupervised techniques are applied before model training and are
independent of the learning objective and application. However, as discussed
by Ilyas et al. and Neutatz et al. [114, 115], methods that clean the data
with respect to the application goals and take the ML model into account
show more promising results. Core-set selection techniques such as the one
presented by Santos et al. [70] can be considered a data-cleaning approach
as the selection process retains the cleanest samples. In their approach, they
use clustering for satellite time series to identify samples that are mislabeled
or have low accuracy with the goal of removing them from the training set to
avoid a decrease in model performance. In some cases, the source of uncer-
tainty is known and can be directly reduced. For instance, data uncertainty
may arise from the presence of clouds, and many methods have been devel-
oped to automatically remove them [63, 66, 67] (see also techniques that act
on diversity and completeness). Northcutt et al. [71], for example, use con-
fident learning [103] to identify and correct label errors. Labels are flagged
as noisy when their label uncertainty is high, which means the model is not
confident about the label (see Section 4.3). These labeled samples are then
iteratively re-labeled using a more accurate labeling function, which can be
a human annotator or a more sophisticated model. When multiple labelers
provide labels, similar strategies can be used to identify the most likely la-
bels or remove highly confusing samples [26]. Most model-based approaches,
however, use data with their quality information during model training in-
stead of cleaning the data and re-training the model in two separate steps
(see Model training and data utilization (Step 4)).

Consistency. Curation activities further aim to establish consistency
across different datasets or data sources and annotators. Hechinger et al.
[72] demonstrate that when a fixed set of labelers is given, there are of-
ten 'voting patterns’ where labelers agree or disagree in a similar manner.
By conducting a clustering analysis of the LCZ42 dataset [116], which was
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labeled by multiple experts, they gained valuable insights regarding the dis-
tinguishability of classes, voting behavior, and the level of consensus based
on the geographic location of the reference images. These insights can be
incorporated into model training (Step 4) or used to develop curation strate-
gies, such as removing labels with low consensus values. An open challenge
is the usage of efficient labeling strategies or the identification of a subset of
samples that should be annotated by multiple labelers to keep the effort low.

Unbiasedness. Furthermore, curation aims to detect and eliminate sys-
tematic biases or distortions in geospatial data. In cases where biases result
from class imbalances or a non-representative spatial distribution [27], simi-
lar to resampling strategies that generate or collect new data, undersampling
strategies for the majority class can be utilized. Risser et al. [73] discuss
methods to remove biases in satellite images, for example, by targeted re-
moval of specific features or samples. It is important to note that removing
noisy data or data with missing values, as discussed in [113], can introduce
further bias, therefore auditing strategies should be used [14] for checking.
Moreover, whether class imbalance is desirable or not depends on the goals
and requirements of the analysis [117].

Relevance. Curation also considers the relevance of the data. By re-
moving irrelevant data, curation ensures that the data is tailored to specific
needs and goals, focusing on the most relevant information. It also natu-
rally reduces the dataset size, improving data efficiency. Core-set selection
methods compute the distance between training and test samples and remove
those with low proximity. For example, in geospatial air quality estimation,
Stadtler et al. [69] demonstrate that removing the 10% of training samples
with the lowest proximity to the test samples only slightly decreases test ac-
curacy, as these samples are not relevant for training. However, they assume
that the test set is representative enough for the complete data set. A more
sophisticated approach is implemented and described in our first experiments
(Section 4.2).

In remote sensing applications with high-dimensional data, there is often
a focus on dimensionality reduction techniques. These techniques aim to
reduce complexity while preserving essential information. Established fea-
ture selection techniques reduce redundancy and noise, thereby increasing
model performance by focusing on the most relevant and informative fea-
tures [75, 74]. With the field of explainable machine learning, new methods
are introduced to calculate importance scores, sensitivities, or contributions
of features and interpret them as relevance [118]. Combining these areas,
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Zhang et al. [76] use a wrapper feature selection method and Shapley val-
ues to identify the most relevant multi-source remote sensing marine data
features used for estimating global phytoplankton group compositions.

3.3. Model training and data utilization (Step 4)

Data set utilization is centered around optimizing the way data is used
during training to improve model effectiveness. Information about the quality
of the data is utilized to enhance model training. Various techniques are
employed to enhance training by, e.g., speeding up convergence or improve
the quality of obtained local optima. In this step, the close interplay between
model-centric and data-centric learning becomes apparent, demanding for a
joint development of methods for both paradignms.

Accuracy. Curriculum Learning, which performs learning from the easi-
est to most challenging samples, and its variants [119] have been successfully
employed for several tasks in the geospatial domain. Mousavi et al. [51], for
instance, introduce a novel deep curriculum learning method for the classi-
fication of PolSAR images by using an entropy-alpha target decomposition
strategy to estimate the degree of complexity of each image sample. This
measure of complexity is related to data accuracy since the speckle generated
during the acquisition of images on vegetation targets creates a variation in
the observations. Ran et al. [52] propose a curriculum learning-based strat-
egy for unsupervised domain adaptation for a semantic segmentation task by
gradually introducing more complex pseudo-labeled samples from the target
domain to the training process. The complexity is given by the confidence
of the samples, defined by the predicted probability. Xi et al. [54] use a
combination of curriculum learning and a weighting scheme for samples in a
semantic segmentation task where a domain shift arises due to distinct geo-
graphic locations of the source and target domain. Instead of only iteratively
selecting the most confident pseudo-labeled samples and adding them to the
training data set to adapt to the target domain, they introduce a weighting
scheme that balances easy-to-transfer samples with a similar appearance as
the target domain and hard classes and samples with low confidence. Dong
et al. [55] propose a weighted loss function term for a landcover classification
task that computes the loss with updated labels. The labels are corrected
based on the uncertainty estimate for that label, which is calculated as the
entropy with the largest and second-largest probability estimate of the net-
work. Similarly, Burgert et al.[56] use self-adaptive training for multi-label
remote sensing classification by adapting the targets in the loss with a moving
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average of the given targets and the class probability estimates for them. As
for the data creating step, the quantification of uncertainty and the notion
of confidence is an open challenge.

Consistency. Some self-supervised learning methods utilize the infor-
mation about the internal consistency within remote sensing data. Notably,
Manas et al. [58] define a contrastive loss that matches samples of the same lo-
cation at different times, Wang et al. use simple augmentation methods [57].
Similarly across modalities, Scheibenreif at al. [60] and Prexl and Schmitt
[59] use the consistencies between optical and radar data to train a deep
learning model. Also, Ayush et al. [61] show that the consistency between
geolocation and image can be used to pre-train deep learning models.

Unbiasedness. Kellenberger et al. [53] employ curriculum learning to
improve training strategies in a habitat suitability mapping task, where class
imbalance and bias are the major challenges. In their approach, they coun-
teract the class-imbalance by exposing the model with increasingly difficult
samples, which means more imbalanced training scenarios during training.

Relevance. Yuan et al. [50] employ a self-paced curriculum learn-
ing (SPCL)-based model in combination with a weighting strategy for vi-
sual question answering (VQA) on remote sensing data. The weights are
learned with an importance sampling strategy, where a large importance
value means that the sample has a high relevance for the model training.
Another strategy that updates the learned model with a schedule is on-
line/incremental /continual learning. Here, the relevance and therefore the
schedule is determined based on the timeliness of the samples with the goal
of adapting the model to new samples that became available. In addition
to timeliness, geographic relevance can also play a role. Thus, observations
are not only influenced by the current imaging conditions but also by the
local appearance of land cover or objects. Roscher et al. [49], for example,
performs a multi-class classification of large neighboring Landsat scenes by
incrementally updating the model with observations from neighboring scenes
that are labeled through a self-training strategy. Bhat et al. [62] combine
continual learning and curriculum learning by using the new data based on
their similarity to the old classes, and additionally focussing on the accuracy
of the samples from the old dataset to reduce the effect of noise and to avoid
the catastrophic forgetting effect.
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3.4. Model Evaluation (Step 5)

At this stage, the model is evaluated regarding efficiency, accuracy, and
generalization ability. In general, depending on the application, a variety
of metrics can be used for the model evaluation and their interpretation,
including different data-specific characteristics such as class imbalance or
varying prevalence, which affect the selection of the correct model [120]. We
will focus on methods and tools that are used for the model evaluation with
a specific focus on methods that make use of the composition of the data and
data quality information.

Diversity and completeness. Following the creation of a dataset, the
customary practice involves dividing samples into training, validation, and
testing datasets. This division is crucial for monitoring the model’s general-
ization and addressing common issues like overfitting or underfitting, particu-
larly prevalent in deep learning models. While random or stratified sampling
is standard in machine learning tasks, applying this directly to geospatial
data can lead to spatial auto-correlation issues among nearby data points
in the training and test datasets, potentially overestimating model accuracy
[121, 41]. For instance, the winner of the EMCL/PKDD conference TiSeLaC
land cover classification contest utilized only geographical coordinates, omit-
ting individual spectral features in predicting land cover [122]. Thus, in
geospatial applications, data sampling strategies should prioritize spatial in-
dependence. Techniques such as spatial leave-one-out cross-validation or us-
ing spatially disjoint scenes for evaluation are essential to mitigate spatial
correlations and ensure robust model evaluation [40, 41]. However, Wadoux
et al. [123] indicate that proper probability sampling without explicit meth-
ods to account for spatial autocorrelation is sufficient. Lyons et al. [42]
compare different resampling methods for classification and show that such
techniques provide robust accuracy and area estimates with confidence inter-
vals. Techniques to identify representative sample sizes [124] for the different
sets should ensure the proper evaluation of the models. In [125], the authors
proposed a method for estimating the sample size required to represent the
modeled or estimated dataset accurately.

A well-generalizing model should predict with a similar accuracy across
the entire evaluation set. However, the model’s performance often varies
depending on the data distribution, which is not captured by aggregated
performance measures. Simply splitting the available dataset into training,
validation, and testing sets is not sufficient to ensure a reliable evaluation of
the model, especially when the optimization of machine learning methods is
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performed on a subset of data that may not represent the real data distri-
bution, as mentioned in the previous sections. To address this issue, slicing
algorithms can be used, especially for small datasets, to ensure a valuable
partitioning of the data. These algorithms aim to split the data and evaluate
the model on relevant sub-populations that share common characteristics.
Defining these sub-populations can be challenging, but it can be based on
expert domain knowledge, such as using slices with similar characteristics
like geographic regions [43].

Furthermore, evaluating in and out-of-distribution is also an essential as-
pect of evaluating the generalization ability of the models. In-distribution
evaluation is the most common way to assess the performance of the models
since the predefined splits usually correspond to the same source of data,
even if this set could include multiple sources and acquisition parameters.
Several works discuss the usefulness and applicability of evaluation metrics
[126, 127, 128]. Evaluating and challenging the performance of the models on
out-of-distribution samples gain more and more attention from the commu-
nity with publicly available datasets such as the WILDS [44], including also
Earth observation datasets, being introduced to benchmark the performance
of the algorithms on different distribution shifts. In a similar direction, the
2017 IEEE GRSS Data Fusion Contest [43] aimed at addressing the problem
of local climate zone classification based on multitemporal and multimodal
datasets and checking the performance of the algorithms on new and separate
geographical locations. Meyer et al. [45] propose the area of applicability of
a trained model by measuring and thresholding the similarity between the
training data and potentially test data samples. Overall, identifying and
understanding distribution shifts is a very active research area.

Accuracy. Leveraging accuracy-related information of data can be used
to assess the robustness and sensitivity of machine learning models, for ex-
ample, through the adoption of test-time data augmentation [28] or pertur-
bations in the data. Such techniques introduce variations and uncertainties
in the data during the evaluation phase offering an evaluation of the model’s
performance beyond accuracy. Li et al. [47] introduced synthetic label noise
to assess the model’s robustness to noise inputs. Mei et al. [46] provides a
review of works that apply different adversarial perturbations to the remote
sensing input images to assess the model’s robustness against adversarial
attacks. Kierdorf et al. [48] cluster saliency maps obtained from systemati-
cally perturbed images and the impact of these perturbations on the model
decision to get insight into the reliability of the model.
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4. Validation studies

The validation studies use three data-centric machine learning algorithms
on a common land cover classification problem from satellite imagery: relevance-
based sample weighting to compensate for geographic domain shift, label
noise reduction and confident learning, and slicing for a comprehensive eval-
uation. Each of them highlight a different aspect of data-centric learning
and provides both qualitative images highlighting the effect of the procedure
and quantitative results that the respective algorithm has on the land cover
classification problem. They confirm the functionality of existing approaches
within the surveyed field and should emphasize that even single data-centric
actions in the machine learning pipeline can lead to better models.

4.1. DFC2020 Land Cover Classification and Experimental Setup

We chose land cover classification to illustrate different data-centric ap-
proaches and use the IEEE GRSS Data Fusion Contest 2020 (DFC2020)
dataset [129]. The DFC2020 addressed large-scale land cover mapping with
weak supervision. The training data is Sen12MS [7], which contains only very
low-resolution MODIS-derived annotations. However, for the additional val-
idation data (i.e., not contained in the Senl12MS dataset), semi-manually
generated high-resolution labels are provided. We use the Sentinel-2 im-
ages from this part of the DFC2020 dataset for the following experiments.
The Sentinel-2 images are provided with 10 bands (where the native reso-
lution of 10m and 20m is resampled to 10m) and are acquired over seven
globally distributed regions. They were semi-manually annotated at high-
resolution (10m) according to a simplified International Geosphere-Biosphere
Programme (IGBP) classification scheme with eight classes ” Forest”, ” Shrub-
land”, ” Grassland”, ” Wetlands”, ” Croplands”, ” Urban /Built-up”, ” Barren”,
and " Water”. While DFC2020 is originally a segmentation dataset, we sim-
plify it for classification by taking the most common labelled pixel as the
single label for each image.

This dataset offers interesting characteristics that enable us to show-
case different aspects of the potential of data-centric learning. On the one
hand, the image data is spatially well distributed over different climate zones,
biomes, and socio-cultural regions. This results in data characteristics that
will be shared only among a subset of images. A similar diversity can also
be expected from the semantic content of the data as captured by the an-
notations. On the other hand, parts of the data will be easier to correctly
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classify than others as they are better represented by prototypical samples
and are more homogeneous in their appearance (e.g. samples of the ”Bar-
ren” or "Water” class). Furthermore, while the annotations are created in a
semi-automatic process, i.e. with thorough quality control, they still contain
a certain amount of noise, ambiguity, and errors.

The seven scenes are split into non-overlapping 256 x 256 pixel patches,
resulting in a total of 6,114 images. As we are dealing with classification
tasks for the following experiments, we follow the classification-oriented con-
version proposed by the creator of dataset and determine the dominant label
(i.e., the class with the most pixels) within a patch and use it as its patch-
level label [130]. These samples are partitioned randomly into 4,000 images
for training, 1,128 for validation, and 986 images for testing in the Experi-
ments 2 and 3. In Experiment 1, we split the images by region to specifically
mitigate and correct for the distribution shift between regions. In this first
experiment, we also use a common Random Forest classification model, while
for Experiments 2-3, we use a deep classification baseline model and train a
ResNet-18 convolutional neural network with the AdamW optimizer using a
learning rate of 0.001 and weight decay of 10~® with up to 1000 epochs. We
saved the model with the lowest validation loss, which resulted in a model
with 123 epochs after four hours of training.

4.2. Study 1: Relevance-based sample weighting to compensate for geographic
domain shift

Motivation. Varying environmental and geographic conditions changes the
visual representation of land cover classes. This can be seen in Fig. 3a where
the average reflectance in red and near-infrared channels varies systematically
between the DFC2020 regions indicated by color. This manifests a data
distribution shift between geographic regions, negatively impacting model
classification accuracy when not all training data is equally relevant for the
particular testing region. In this case, data from the source distribution (i.e.,
training data) does not overlap with the target distribution (testing data).
This can be seen in the case of Cape Town and Black Forest in Fig. 3a.
Aim. We aim to reduce the distribution shift with respect to a target region
by weighting each image sample with an importance coefficient in an instance-
based transfer learning approach [131]. In this method, samples from the
source distribution that are assigned high importance weights are deemed
more relevant for the particular target distribution, while low weights are
assigned to irrelevant samples.
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region B. Anz.  Mumbai Mex. C. C. Town B.For. Chab. Kip. R.
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weighted 55.47 50.78 59.92 80.90 75.35 28.19 59.80
difference 0.74 1.00 -0.41 -0.21 6.30 2.26 1.17

Figure 3: Experiment 1: Sample-wise debiasing geographic domain shift with KLIEP.

Method. We use the Kullback—Leibler importance estimation procedure
(KLIEP) [132] using the Frank-Wolfe algorithm [133] implemented in the
Python Adapt package [134] to determine the relevance-weighting scheme.
This algorithm approximates the source and target distributions by the sum
of each sample’s radial basis function (RBF) kernel densities. We perform a
grid-search for kernel width between 0.1 and 2.0 in regular 0.1 steps. KLIEP
iteratively adjusts the sample weights so that Kullback-Leibler (KL) diver-
gence between target distribution and source distribution is minimized, as
shown in Fig. 3b. We represent each image sample as a 20-dimensional vector
of pixel-average band reflectances (10 channels) and their standard deviations
(10 channels). We then fit a random forest classifier from Scikit-Learn [135]
with uniform weighting and a KLIEP-derived importance weighting on the
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Table 1: Target accuracy in [%] using regular-uniform weighting vs. relevance-weighting
of training data

Region B. Anz. Mumbai Mex. C. C.Town B. For. Chab. Kip. R.
Uniform sampling 54.73 49.78 60.33 81.11 69.04  25.93 58.63
Weighted sampling 55.47 50.78 59.92 80.90 75.35  28.19 59.80
Difference 0.74 1.00 -0.41 -0.21 6.30 2.26 1.17

source regions and measure the accuracy on the target region.

Results and Interpretation. We show results in Figs. 3c and 3d and Ta-
ble 1. First, Fig. 3¢ shows a world map with average relevance of all images
within each source DFC region (scaled circles) with respect to Mumbai. This
generally covers Tobler’s [136] intuition that more geographically nearby ar-
eas, like Bandar Anzali, are more relevant than distant ones. However, envi-
ronmental conditions beyond mere geographic distance also contribute to the
relevance, as the high importance of Mexico City images shows that it shares
a similar arid climate. Second, Fig. 3d extends this comparison across all
regions and shows the sample-averaged importance scores as edge width and
color in a bi-directional graph between all DFC different regions. Here, we
can see more generally that nearby (Mumbai <+ Bandar Anzali) temperate
and forested regions (Black Forest «» Chabaraovsk) and arid regions (Cape
Town < Mexico City > Mumbai <+ Kippa Ring) are more relevant for each
other.

Finally, Table 1 quantifies the accuracy benefit of classifying on a sample-
weighted training source dataset with respect to each target region in the
columns. The row “uniform weighting” shows classification results on the
random forest trained on regular uniformly weighted training data, while “rel-
evance weighting” reports the accuracy on KLIEP-weighted training samples.
The “difference” rows indicate in which regions the de-biasing was beneficial
(positive) or detrimental (negative) to the final target accuracy. Here, the
weighting positively affected five of the seven DFC regions up to 6.3%. Two
regions were classified at lower accuracy (up to -0.41%). That this proce-
dure can also have detrimental effects in same case illustrates the inherent
challenge of deriving the relevance of samples and that negative transfer can
occur and deteriorate performance.

Summary. We implement and demonstrate the KLIEP algorithm to derive
a relevance-based weighting scheme to account for geographic distribution
shifts. This reveals patterns in the data, such as which geographic areas
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Figure 4: Qualitative results, Experiment 2. (a) Potential label issues detected by Con-
fident Learning in the DFC training set. The model’s predicted class probabilities are
shown as bar charts. (b) Histogram of the label quality of class “Urban/Built-up” with
three example images.

are more classification-relevant than others, but also improves the predictive
accuracy when weighting the training samples accordingly. However, this
procedure does not always increase the accuracy. It can also have detrimen-
tal effects when less relevant samples are falsely assigned a higher impor-
tance/relevance score due to incomplete approximations and simplifications,
as is necessary for choosing kernel functions or the distribution divergence
metric with computational restrictions in mind. Further research is necessary
to make these algorithms applicable with less supervision and more general
with less hyperparameter tuning.

4.8. Study 2: Pruning noisy data with confident learning

Table 2: Quantitative results of study 2. Model performance when training on the entire
training dataset (baseline) and after pruning noisy training samples (confident learning).

Accuracy [%)]

Baseline 66.53
Confident learning 69.98

Motivation. Accurate data labels are crucial for the effectiveness of trained
models, yet inaccuracies can significantly undermine model performance. In
geospatial remote sensing, label issues often arise due to similarities in ap-
pearance between classes, such as “Grassland” and “Shrubland” sharing com-
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parable vegetation characteristics, which can lead to confusion. Additionally,
the spatial distribution of certain classes, like “Wetlands” being commonly
located near water, increases the likelihood of co-occurrence within patches,
further complicating accurate labeling.

Aim. Our aim is to improve label accuracy by ranking data samples and
pruning potentially noisy samples

Method. To achieve this, we employ confident learning [71], a framework de-
signed to estimate label uncertainty and enhance dataset quality. Confident
learning operates under the assumption that label noise is class-conditional,
depending solely on the true class rather than the data itself [103]. Although
this is a simplification, it is a reasonable assumption for many scenarios,
including land cover classification.

The method involves training a machine learning model on the dataset
and then estimating the joint distribution of noisy (given) labels and true
(unknown) labels. This estimation is done by identifying examples likely
to have label issues. For instance, it counts all patches labeled as “Grass-
land” that have a sufficiently high predicted probability of being “Shrub-
land”. Here, a value for sufficiently high is determined by a class-specific
threshold calculated as the model’s average self-confidence for each class.
Using the estimated joint distribution, all samples are ranked based on their
likelihood of being noisy. Potentially noisy samples are then pruned from the
dataset.

Results and Interpretation. The confident learning method flagged 123
samples in the DFC training set as having potential label issues. Six of
these samples are presented in Fig. 4a, illustrating instances where the model
disagreed with the given label. In some cases, as seen in the lower left image,
discrepancies arise from the presence of multiple classes within one patch,
while in other cases, such as the top left image, the reason is related to the
similarity in appearance between classes. Figure 4b shows a histogram of the
label quality of all training samples belonging to class “Urban/Built-up”,
accompanied by three example images representing different label qualities:
one with high label quality, one with medium label quality, and one with low
label-quality. These examples show that the label quality tends to degrade
as the fraction of “Urban/Built-up” pixels within the patch decreases. To
improve the quality of the training data, the samples flagged as noisy were
removed. Re-training the model on this pruned dataset resulted in an overall

accuracy improvement of +3.45 percentage points compared to the baseline
(see Table 2).
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Summary. Confident learning is a form of data curation that is typically
used to improve the training dataset quality by pruning noisy data. This
approach is especially relevant for settings with low label granularity, where
multiple classes are present within the same image. By pruning the dataset,
confident learning aims to improve the accuracy of the labels.

4.4. Study 3: Evaluation with slice discovery

Motivation. To ensure a comprehensive evaluation of model performance, it
is beneficial to identify human-understandable subsets of test samples within
each class, where the model’s performance varies across different slices. This
approach provides deeper insights into the model’s strengths and weaknesses.
Aim. Our aim is to demonstrate the insights that can be gained by analyzing
slices in the test data.

Method. We utilize the idea of slice-finding methods, such as presented in
[137]. To analyze the data at test time, we first represent all data points by a
latent representation vector, produced via feature extraction of a pre-trained
ResNet18 neural network of Prexl et al. [59], which is a domain-specific
(trained on Sentinel-2 images of the SENI12MS dataset) pre-trained net-
work based on the SimCLR contrastive learning paradigm [138]. We extract
a 512 dimensional feature for each image in the test set of the DFC2020
dataset. Using those latent feature representations allows for sub-clustering
of all samples within one class by applying k-means clustering in the latent
space.

Results and Interpretation. The cluster-center affiliation of each sample
allows for quick and robust visual analysis of the data and can produce fur-
ther insights about the task at hand. This can subsequently be used to make
informed decisions regarding improved labeling schemes or feedback into the
data curation step (Step 2 in Fig. 1). We show two examples of “Cropland”
and “Water” with their dominant sub-slices in Fig. 6. This reveals directly
different patterns within one class label, which might harm the model’s per-
formance. In the first case, looking at all samples labeled as “Water”, it can
be observed that the slices capture different subcategories like river, lake, and
open ocean. While “Water” is accurately classified, “Cropland” is commonly
confused with “Grassland”, as shown in the confusion matrix Fig. 5. Here,
analyzing sub-slices can reveal failure cases: “Cropland” samples cluster in
two slices with different climate conditions or seasons. While the performance
on all samples in the first slice (Fig. 6) has 100% accuracy, the performance
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Figure 5: The confusion matrices (left: validation set, right: test set) of the model de-
scribed in Section 4.1 for validation (left) and test set (right).

for the second slice drops significantly to 10%, likely due to the high similarity
to the “Grassland” samples it he training set.

Summary. Overall, slice discovery methods serve as tools to gain insights
into the outcome of a specific task that is given to the model beyond accu-
mulated numbers. This insight can be used directly for data creation and
curation to improve the performance by, for example, creating new classes
for the sub-slices.

5. Discussion & Conclusion

Shifting research focus from well-explored model-centric approaches to-
wards the broader aspects of the entire machine learning cycle, especially
data-centric learning techniques, is necessary to make further progress to-
wards accurate and generalizable models. Here, we find that so far, only lim-
ited research is focused on automated data-centric approaches that explicitly
improve the quality criteria that we categorized in Section 2 or utilize them
for the model-building process. In this work, we provided an extensive liter-
ature review in Section 3 and categorized the techniques according to steps
in the machine learning cycle and identified the quality criteria they improve
or use. This literature study was complemented by concrete implementation
examples in Section 4 to stress the applicability of some of the data-centric
methods.

Research Gaps. Unlike the numerous well-established metrics available to
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visual examples of the sub-cluster analysis for the “Cropland” and “Water” classes.
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measure the performance of machine learning models, standardized metrics
to evaluate the quality of a dataset are not established so far [1]. Within the
studied data-centric approaches, we identified research gaps in Fig. 2 in the
following steps:

Step 2: Creation Only a few existing works focus on automated data cre-
ation to improve data consistency, unbiasedness, or relevance. While
these criteria are often considered in the manual selection of training
and evaluation sites, little work has been found on the automation of
this process through data-centric learning in the geospatial domain.
Also, little research has been conducted so far on the benefit of syn-
thetic, generated, and augmented data for geospatial remote sensing
data.

Step 3: Curation We find that few works focus on maximizing diversity,
consistency and/or unbiasedness through data curation. This has sev-
eral factors: First, it is plausible for diversity, as curation is more
aimed at cleaning up and deleting data, which hardly increases diver-
sity. Moreover, it is challenging to quantify diversity and completeness
as a reference is missing. Usually, such shortcomings are revealed af-
ter the model deployment step, which can be fed back to the machine
learning cycle. Currently, however, most works do not consider feed-
back loops. Research related to consistency is restricted due to the
limited availability of datasets (i.e., multi-labeler datasets) that allow
focusing on this aspect. Bias is still an under-investigated criterium
and its cascading effects on the results are underestimated. Usually,
biases in the dataset are revealed too late in the model deployment
(Step 6). Fortunately, a new sensitivity has evolved towards this cri-
teria. Overall, research is currently hindered due to the lack of clear
objectives on what a data set should look like regarding the quality
criteria. For example, curation strategies can be too time consuming
and costly compared to their benefit on the dataset. Also data-centric
and model-centric developments need to be balanced to find the best
way to deal with the data and the application.

Step 4: Utilization We find that few works use completeness or unbiased-
ness. However, in contrast to previous steps, we believe that these
criteria are less relevant for the data utilization in the model training
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context, while diversity, accuracy, and relevance are well covered by
existing literature.

Step 5: Evaluation As already underlined by Rolf et al. [128], there are
several opportunities for a better evaluation that have not been ex-
ploited yet. Investing in a high-quality evaluation data set is impor-
tant to get a comprehensive view on the ability of the model. Further,
we need to distinguish between performance measures reported with a
statistical parameter and measures that provide insights into the skill
for a given task. Generally, there is limited research that uses consis-
tency, bias, and relevance information of the data to get insights into
the model’s performance.

Experimental Performance. Another important point of discussion is
the effectiveness of current data-centric approaches in experiments. While
all proposed methods are well-motivated, the actual improvement in accu-
racy often falls short of expectations. For example, in Study 1 (Section 4.2),
weighting dataset samples regarding their relevance only improves two out
of five regions. Similarly, in Study 2 (Section 4.3), the quantitative accuracy
gain by removing samples with label noise only results in a 3.5% improve-
ment. However, both approaches reveal underlying patterns in the data that
can provide valuable insights on their own. Additionally, in real-world appli-
cations, accuracy is not the sole factor of interest. Factors such as reliability,
precision, robustness, and adaptability are often equally important. Further-
more, a major goal is to avoid the negative effects caused by low-quality data
[17]. We further want to point out that the used methods were chosen due
to their already proven performance in diverse fields. However, the success
of data-centric techniques also depend on the chosen model, therefore we en-
courage considering the whole machine learning cycle, including model- and
data-centric aspects.

Limitations. Several limitations need to be considered in the interpretation
of this study. First, the proposed categorizations are not sharp. Methods
can be argued for improving multiple criteria. For instance, the first study
uses KLIEP [132] (data curation) to address the relevance, but it can also
be seen as a de-biasing strategy. Here, the irrelevant samples with respect to
one target area receive a low weight and are discarded. Simultaneously, this
process of selecting the most relevant instances de-biases the entire datasets
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if we are aware of a certain sampling bias, e.g., towards some continents.
Similarly, the process of data augmentation can be argued towards data
creation (step 2), as new augmented samples are virtually created, or data
utilization (step 4), as the existing data is utilized more effectively by flipping
and rotating images without the need to collect new data samples. Finally,
we highlight that the manual search of literature always introduces a certain
selection bias. We aimed to mitigate this by inviting a diverse range of co-
authors who work across disciplines that create, curate, and utilize geospatial
remote sensing data. We believe that this broad expertise allowed us to
extensively and intensively search the entire body of published literature in
this domain.

Conclusion and Outlook. We consider this review as a starting point to
raise awareness about the possibilities of data-centric machine learning in the
geospatial domain rather then arguing against model-centric research. This
review introduced the definitions, and relevant criteria to give researchers
the tools and structure to improve datasets in an automated and systematic
way. Focusing on the entire machine learning cycle from problem definition
to model deployment with feedback is necessary to train machine learning
models that can generalize well to new locations and can be trusted in un-
expected situations. This is captured and quantified in data-centric learning
that explicitly improves and uses the relevant data quality criteria. Future
research is necessary to fill the identified research gaps in data creation and
curation towards a higher quality of datasets. Further, additional method-
ological developments are necessary to improve the reliability of data-centric
methods that today often fall behind expectations. In summary, we hope
that this review helps to structure and guide this discussion and leads to
method developments targeted towards new unexplored directions that help
tackle real-world problems with high-quality data.
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