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Abstract 

Background Image-based crop growth modeling can substantially contribute to precision agriculture by revealing 
spatial crop development over time, which allows an early and location-specific estimation of relevant future plant 
traits, such as leaf area or biomass. A prerequisite for realistic and sharp crop image generation is the integration 
of multiple growth-influencing conditions in a model, such as an image of an initial growth stage, the associated 
growth time, and further information about the field treatment. While image-based models provide more flexibility 
for crop growth modeling than process-based models, there is still a significant research gap in the comprehensive 
integration of various growth-influencing conditions. Further exploration and investigation are needed to address this 
gap.

Methods We present a two-stage framework consisting first of an image generation model and second of a growth 
estimation model, independently trained. The image generation model is a conditional Wasserstein generative adver-
sarial network (CWGAN). In the generator of this model, conditional batch normalization (CBN) is used to integrate 
conditions of different types along with the input image. This allows the model to generate time-varying artificial 
images dependent on multiple influencing factors. These images are used by the second part of the framework 
for plant phenotyping by deriving plant-specific traits and comparing them with those of non-artificial (real) reference 
images. In addition, image quality is evaluated using multi-scale structural similarity (MS-SSIM), learned perceptual 
image patch similarity (LPIPS), and Fréchet inception distance (FID). During inference, the framework allows image 
generation for any combination of conditions used in training; we call this generation data-driven crop growth 
simulation.

Results Experiments are performed on three datasets of different complexity. These datasets include the laboratory 
plant Arabidopsis thaliana (Arabidopsis) and crops grown under real field conditions, namely cauliflower (Growli-
Flower) and crop mixtures consisting of faba bean and spring wheat (MixedCrop). In all cases, the framework allows 
realistic, sharp image generations with a slight loss of quality from short-term to long-term predictions. For Mixed-
Crop grown under varying treatments (different cultivars, sowing densities), the results show that adding these 
treatment information increases the generation quality and phenotyping accuracy measured by the estimated 
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biomass. Simulations of varying growth-influencing conditions performed with the trained framework provide valu-
able insights into how such factors relate to crop appearances, which is particularly useful in complex, less explored 
crop mixture systems. Further results show that adding process-based simulated biomass as a condition increases 
the accuracy of the derived phenotypic traits from the predicted images. This demonstrates the potential of our 
framework to serve as an interface between a data-driven and a process-based crop growth model.

Conclusion The realistic generation and simulation  of future plant appearances is adequately feasible by multi-
conditional CWGAN. The presented framework complements process-based models and overcomes their limita-
tions, such as the reliance on assumptions and the low exact field-localization specificity, by realistic visualizations 
of the spatial crop development that directly lead to a high explainability of the model predictions.

Keywords Machine learning, Image generation, Conditional GAN, Growth modeling, Crop mixtures

Background
Growing crops sustainably, i.e., producing sufficient 
agricultural output with high resource use efficiency 
and minimal negative impacts on ecosystems, requires 
complex optimization of crop management [1]. Deci-
sions on the operations during the season include the 
timing and amounts of fertilization, irrigation, protec-
tion against pests and pathogens, weeding, applying 
growth regulations, and other activities. The optimal-
ity of most of these operations and their combinations 
depend on the phenology of crops, i.e., the growth 
stages and size of the plants. Complex and multiple 
interactions typically occur between different manage-
ment factors, crop genotypes, and variable environ-
mental factors, affecting crop performance differently 
at different growth stages. Because of this complexity, 
identifying optimized crop management is not trivial, 
and various ways have been developed to tackle this 
problem and to understand crop responses to complex 
management ×  environment interactions. Two com-
plementary approaches are experimental field trials 
and process-based (mechanistic) crop growth moni-
toring. While field experimentation integrates actual 
environmental and management conditions, it is lim-
ited in time and space and can only test a low num-
ber of such conditions. Crop growth modeling, on the 
other hand, while allowing the simulation of multiple 
conditions, including future environments, is always 
a simplification of the situation in the field and may 
be limited in predicting realistic responses of crops, 
especially under a changing climate [2]. Because of 
the central role of crop phenology in agronomic deci-
sion-making, it is useful to predict future crop growth 
stages and crop appearance in the season. One path-
way towards this goal is the automatic generation of 
crop images derived from images taken during earlier 
stages. This is particularly difficult but also useful in 
crop mixtures, where interactions occur between two 
or more crop species grown together on the same field.

As an example, cereal and legume crop mixtures are 
known to improve resource use efficiency [3], enhance 
nutrient acquisition [4], maximize system productivity 
through complementarity, especially on low input land 
limited by nitrogen deficiency [5], and reduce weeds, dis-
eases, and insect pest infestations [6]. Nevertheless, many 
farmers do not consider crop mixtures as an option, often 
due to a knowledge gap in species, cultivar, and treat-
ment selection, which results in performance uncertainty 
[7]. Predictive crop modeling is one approach to dealing 
with complexity and overcoming this uncertainty.

The differences between predictive crop growth mod-
els are manifold. Process-based models are based on 
biological and physical relationships and aim to repre-
sent the mechanics of plant growth and thus have a high 
interpretability. They are also suitable for long-term pre-
dictions and can be generalized to different locations, 
but both require a complex calibration to the respective 
environment. Image-based crop growth models, on the 
other hand, are data-driven, with information on the 
actual crop environment encoded in the image. By using 
machine learning to process this image data, data-driven 
models can build complex relationships [8] without rely-
ing on simplified assumptions, like process-based mod-
els. The modeling process becomes less interpretable, but 
the resulting predicted image, depicting a realistic future 
spatial plant development and derived phenotypic traits, 
can be more effectively explained in a human-under-
standable manner. The predicted image is highly versa-
tile, which is particularly interesting for crop mixtures, 
e.g., to count the future number of crops at certain field 
positions or to visualize, and thus better understand, how 
two species behave and compete with respect to certain 
influencing factors. Therefore, this work aims to extract 
more insight from image-based models to complement 
missing facets of existing well-established crop growth 
models.

In recent years, the most widely used method for 
image generation in plant science has been Generative 
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Adversarial Networks (GANs) [9], as they have proven 
to generate high-quality images. In particular, its condi-
tional GAN (CGAN) variant has found a wide application, 
e.g., to generate realistic plant images [10–12] for data 
augmentation, or segmentation [13]. While these works 
operate in the same temporal domain, few works exist 
that incorporate the factor of time to generate and analyze 
probable future growth stages. Yasrab et al. [14] generate 
segmentation images of future root and shoot systems of 
Arabidopsis (Arabidopsis thaliana) and Komatsuna (Bras-
sica rapa) based on a time series of past images. However, 
their GAN model is limited to observation times with 
fixed constant intervals, severely limiting the space of 
possible input time series and making long-term predic-
tions difficult. Furthermore, due to significant differences 
in the bit depth, the generation of segmentations is much 
less complex than the generation of artificial plant images, 
which can be considered as artificial sensor data. Drees 
et al. [15] show long-term predictions of realistic images 
of the above-ground plant phenotype. However, it has the 
disadvantage that time is not explicitly included as a con-
dition, so the image generation is limited to predefined 
growth prediction steps between fixed growth stages. This 
challenge can be addressed by extending the generator 
with modules responsible for integrating the time factor, 
such as a combination of positional encoded time points 
and a transformer encoder, as shown in [16]. This allows 
the flexible integration of multiple time points as a condi-
tion and the generation of an arbitrary growth stage in the 
output. However, the image quality is not optimal because 
the model is limited to a small bottleneck dimension due 
to a parameter-intensive Transformer encoder. Further, 
the evaluation in this work is based only on classical met-
rics, such as structural similarity, but lacks crucial plant-
specific evaluations that demonstrate actual usability by 

deriving phenotypic traits. In general, all the methods 
mentioned above have the disadvantage that plant growth 
is greatly simplified by considering only other growth 
stages, so the time factor in the input, while it is subject to 
complex mechanisms. Miranda et al. [17] attempt to get 
closer to this complexity by integrating more conditions 
into the growth modeling, which allows them to generate 
controlled and more explainable output images. However, 
the method is limited to continuous conditions and a pre-
defined growth prediction step from a fixed early growth 
stage to a fixed later growth stage, which is unfavorable 
in agricultural practice. Integrating multiple conditions is 
generally a non-trivial task, as conditioned image genera-
tion tends to generate deterministic and less diverse out-
puts up to mode collapse [18]. There are many different 
ways of integrating conditions from concatenation [19] 
over auxiliary classifiers [20] and latent projection [21] to 
conditional batch normalization [22, 23]. This work uses 
the latter because it allows the intuitive integration of 
multiple conditions while maintaining the stochasticity of 
the model to create an adequate distribution of generated 
plants.

An overview of our growth simulation framework 
is depicted in Fig.  1. It is a two-step procedure in which 
time-varying images are first generated with the image 
generation model and then analyzed with an indepen-
dently trained growth estimation model. An important 
novelty in the image generation model, which is a Condi-
tional Wasserstein GAN (CWGAN), is the integration of 
multiple conditions of different types, that is, images (2D 
spatial continuous variables), time points (discrete), treat-
ment information (categorical), and daily simulated bio-
mass (continuous). Since the biomass is process-based 
simulated, we demonstrate that the image generation 
model can serve as an interface that makes the output of 

Fig. 1 Proposed two-step crop growth simulation framework: In the first step of image generation, an input image is initially encoded with its 
associated time (t) and treatment (trt). Then, this encoded representation can be decoded into newly generated images with varying growth 
stages for different simulation times and treatments (gray boxes). In the second step of growth estimation, target traits such as projected leaf area 
or biomass are estimated from the images and analyzed over time. Both models are trained independently
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process-based crop growth models more explainable by 
visualizing the spatial crop development. Conditioning is 
realized by conditional batch normalization in both parts, 
the encoder and decoder, of the CWGAN generator. This 
enables simulations during inference, i.e., while fixing ini-
tial conditions (input image, time, and treatment), for other 
growth stages, conditions can be varied—as required—to 
generate multiple realistic predictions, as shown in Fig. 1. 
Experiments have been conducted on different datasets of 
varying complexity, from the plant Arabidopsis thaliana 
(Arabidopsis) to real field data with cauliflower (Growli-
Flower) and crop mixtures (MixedCrop). In addition to 
classical GAN evaluation measures, we evaluate the qual-
ity of generated images through the growth estimation 
model, which acts as a plant phenotyping module, by com-
paring (depending on the dataset) the projected leaf area 
or the biomass estimated from generated and real images. 
For crop mixtures, this allows us to compare our image-
based crop growth model and a classic process-based one 
with biomass-cutting references obtained in the field. A 
transferability experiment demonstrates that our frame-
work has the potential to be transferred to crop mixtures 
in another field with different environmental conditions.

Materials and methods
This section introduces the data basis (see Data section) 
and the framework,1 where a 2-step approach is followed. 
First, an image is generated (see  Image generation sec-
tion), and second, the growth is estimated using plant 
phenotyping (see   Growth estimation  section). While 
existing state-of-the-art models are used for growth 
estimation, which is fine-tuned on our data, the meth-
odological focus of this work is on the first part, image 
generation. We also provide details about the process-
based crop growth model (see Process-based modeling of 
crop mixtures section) used to evaluate and analyze gen-
erated images of crop mixtures.

To specify the terminology:  We call the output of 
the image generation model generated or predicted 
image.  The output of the whole framework is called 
data-driven prediction, in contrast to the process-based 
prediction, which is the process-based simulated bio-
mass.  In the case of predictions, there is always a time 
shift �t = tgen − tin , so �t > 0 means prediction into the 
future, �t < 0 means prediction into the past, and Δt=0 
is an identity mapping.  The output of the growth estima-
tion model is an estimation (no time shift) relating to its 
own input but a prediction relating to the input of the 
preceding image generation model.

Data
Experiments are set up on three different datasets: 
Arabidopsis, GrowliFlower, and MixedCrop, all contain-
ing RGB-image time series/sequences of plants (Fig.  2). 
They meet the minimum requirement of having aligned 
images, meaning that all images of a sequence show 
the same region from the same perspective and resolu-
tion over time. Ideally, lightning conditions are con-
stant, which is only the case for the Arabidopsis dataset. 
Beyond that, they differ in essential aspects such as 
overall size, type of plants, heterogeneity of images, and 
number, as well as regularity of acquisition times during 
the vegetation period. Notably, additional conditions on 
treatment and daily simulated biomass are available only 
for MixedCrop, all listed in Tab. 1.

Arabidopsis The Arabidopsis dataset [24] includes 
80 different Arabidopsis (Arabidopsis thaliana) plants 
recorded on four trays of 20 plants each over a 35d 
period using an IDS UI-5480SE camera (Tamron 8mm 
f1.4 lens, 5MP). The camera was mounted on a robotic 
arm in a controlled laboratory environment, ensuring 
image alignment. All tray images are corrected for bar-
rel distortions with a provided calibration script [24] and 
then manually cropped at the edges of the pots, result-
ing in images with a single plant in the center region. We 
focus on images from 18 days of early developmental 
stages of Arabidopsis thaliana from day 21 after sowing, 
which is shortly after plant emergence, to day 38 after 
sowing. Any plants removed from the experiment before 
day 38 or protruding beyond the pot’s edge after day 38 
were filtered out, leaving 64 plants. Please note that the 
number of images per sequence exceeds the duration of 
the observation period in [d] because not only one image 
per day was taken, but up to four per hour.

GrowliFlower The GrowliFlower dataset [25] contains a 
total of 102 264 images of cauliflower (Brassica oleracea 
var. botrytis) in 2021 from a field in Bornheim, Rhein-
Sieg Kreis, Germany. We use images within the 71-day 
period after planting and exclude images after harvest. 
The images are orthophoto crops taken from a drone 
equipped with a Sony Alpha 7R III camera (Zeiss/Batis 
2.0 lens, 47.4MP ). The geo-referencing of the orthopho-
tos allows aligned plant-centered cropping at the same 
position at each point in time. However, compared to 
Arabidopsis, there is not only one plant per image, but 
more heads are visible at the image edges and overlap in 
later growth stages.

MixedCrop The MixedCrop data are from a 2020 and 
2021 PhenoRob crop mixture experiment described 
in detail by Paul et  al. [26]. Two different cultivars of 
faba bean (FB, Vicia faba) and twelve different entries 
of spring wheat (SW, Triticum aestivum) were sown 
in mixtures of a 1:1 ratio, which means 50  % of seeds 1 Source code is publicly available: https:// github. com/ luked 12/ crop- 

growth- cgan

https://github.com/luked12/crop-growth-cgan
https://github.com/luked12/crop-growth-cgan
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Table 1 Dataset characteristics

The upper block indicates the image specifications for the image generation model, where the different conditions time (t), treatment (trt), and biomass (bm) 
are highlighted, and the bottom block displays the number of images used to train, validate, and test the resp. growth estimation model (GEM), which is trained 
independently on individual images without sequence information.
1 The number of different time points equals the max. sequence length; for Arabidopsis, it is greater than the period because up to four images were taken per hour
2 The number of sequences equals the number of different plants in Arabidopsis and spatially separated field patches in GrowliFlower and MixedCrop

Arabidopsis GrowliFlower MixedCrop

Mixed-CKA Mixed-WG

# images 54,384 102,264 21,371 18,800

Observation period [d] 18 71 113 109

# times1 (Cond.: t) 850 12 11 10

# sequences2 64 8522 2226 2212

# train sequences 40 6572 1555 1580

# val sequences 8 979 311 316

# test sequences 16 971 311 316

∅ images/sequence 850 12 9.60 8.50

image size [px] 256 256 256 256

GSD [mm] 0.23 3.10 5.67 5.67

diff. treatments (Cond.: trt) × × � (76) � (76)

sim. biomass (Cond.: bm) × × � �

GEM: # train images 512 1541 15,017 13,154

GEM: # val images 148 326 3177 2823

GEM: # test images 148 330 3177 2823

Fig. 2 Example evolution over time of one plant resp. from each of the datasets (a) Arabidopsis, (b) GrowliFlower, (c) Mixed-CKA, and (d) Mixed-WG 
visualized by georeferenced clips from RGB orthophotos. The number above the images indicates the growth stage for (a), (c) and (d) in days 
after sowing [DAS] and for (b) in days after planting [DAP]
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of each species from the respective monoculture as 
well as in monocultures. The field experiments were 
conducted at two research sites of the University of 
Bonn in the Rhein-Sieg-Kreis, Germany, namely, Cam-
pus Klein-Altendorf (CKA, near Rheinbach) and at 
Wiesengut (WG, near Hennef ). Coupled with two dif-
ferent seeding densities i.e. low (L) 80% and high (H) 
120% of the recommended sole crop densities (400 
seeds m−2 for SW and 45 seeds m−2 for FB), this results 
in (2 · 12+ 2+ 12) · 2 = 76 different treatments, which 
were replicated four times, or, in case of the faba bean 
monocultures, eight times, resulting in a total of 320 
different plots of size 10m× 1.5m at each of the two 
sites. Both experimental sites are located about 30 km 
apart and have significantly different growing condi-
tions because Mixed-CKA is managed conventionally 
and Mixed-WG organically.

The image acquisition was conducted in 2020—11 
times for Mixed-CKA and 10 times for Mixed-WG 
by UAV equipped with an FC6310 camera (1” CMOS 
8.8mm, 20MP). The 320 field plots are positional-aligned 
cropped from the geo-referenced orthophotos before 
being horizontally rotated and plot-centered cropped 
into seven non-overlapping and square image clippings. 
Due to orthophoto corruptions and destructive field 
measurements, some sections were manually removed, 
resulting in 21,371 images for Mixed-CKA and 18  800 
images for Mixed-WG. For Mixed-WG, a significant 
spatial alignment error was noticed by visual inspection, 
which is up to 10cm, but inconsistent across the images 
and, therefore, difficult to filter out. Since 10cm corre-
sponds approximately to the spatial extent of a faba bean 
plant at 20 days after sowing (DAS), the offset is well vis-
ible in the early images. For this reason, Mixed-WG is 
not used for training; instead, it is intended to check the 
transferability, i.e., model learned on Mixed-CKA and 
applied on Mixed-WG.

In addition, a variety of other data were collected in 
this crop mixture experiment, including weather, soil, 
and nutrient parameters as well as height and biomass 
measurements [26, 27] that are used in this work to cali-
brate and evaluate a process-based crop growth model 
as described in the Process-based modeling of crop mix-
tures section. In the following experiments, the manual 
biomass cuts on day 83 after sowing are referred to as the 
“cutting reference”.

The datasets vary in complexity: The challenges of the 
GrowliFlower and MixedCrop datasets are the considera-
ble gaps of different lengths between the recording times. 
In addition, there are large spectral variations both within 
each time series and between Mixed-CKA and Mixed-
WG, mainly due to different solar radiations, cloud 
coverings, and soil moistures during the overflights. 

Compared to the other datasets, MixedCrop is the most 
challenging due to its small size combined with many 
overlapping mixed crops, even at early growth stages. All 
images are resized to a uniform size of 256 px × 256 px 
for the experiments, resulting in different ground sample 
distances (GSD) from 0.23  mm to 5.67  mm. The image 
sequences are divided into the same spatially separated 
training, validation, and test sets for all experiments.

Image generation
For image generation, we build a multi-conditional Was-
serstein GAN with gradient penalty (CWGAN-GP) [28] 
from several state-of-the-art components. The network 
consists of a generator Gθ and a critic Dδ , where Gθ pre-
dicts images and Dδ estimates a score for generated 
and real images. A special focus is on integrating mul-
tiple conditions of different types in the architecture as 
described in the Network architecture with multi-condi-
tioning  section.

Conditional wasserstein GAN objective
In the generator, a target image X gen = Gθ (X in, y, z) is 
generated from an input image X in , conditions y that 
split into [yin, ygen] , and noise z ∼ N (0, 1) . Both yin and 
ygen represent multi-conditioning, which can be com-
posed of several of the following conditions: categorical 
(class) variables c, discrete variables t, and continuous 
variables b . In the critic, either the reference Dδ(X ref,X in, 
y ) or the generated image Dδ(X gen,X in, y ) are presented 
along with input image and conditions. The critic esti-
mates a score for both real and generated input, which is 
capable of enforcing the minimization of the Wasserstein 
distance between the two distributions. The objective of 
adversarial training is to optimize the parameters θ and δ 
by maximizing the objective function LGAN(Gθ ,Dδ) by Dδ 
and minimizing it by Gθ.

(2) represents LGAN(Gθ ,Dδ) with the classic CWGAN 
objective in the first line [29], added with the gradient 
penalty term in the second line to enforce the required 
1-Lipschitz continuity of Dδ [28].

The gradient penalty is computed by blending a gen-
erated image with a reference image, resulting in 
X̂ = ǫX ref + (1− ǫ)Gθ (X in, y, z) , where ǫ is a random 
value in the range [0, 1], and its impact is controlled by 

(1)θ∗, δ∗ = arg min
θ

arg max
δ

LGAN(Gθ ,Dδ)

(2)

LGAN(Gθ ,Dδ) =E(z,X in,y)[Dδ(Gθ (X in, y, z),X in, y)]

− E(X ref,X in,y)[Dδ(X ref,X in, y)]

+ �GPE(X in,X̂ )
[(�∇

X̂
Dδ(X in, X̂ )�2 − 1)2]
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�GP . Using LGAN(Gθ ,Dδ) minimizes the Wasserstein-1 
distance, sidestepping issues like mode collapse and van-
ishing gradients in classic GAN training.

Network architecture with multi‑conditioning
Generator The generator consists of an encoder P 
that compresses the input image and conditions 
related to the input image into a latent representation 
ξ = P(X in, yin) and a decoder Q that generates the tar-
get image from this latent representation, the conditions 
for the image to be generated and a stochastic compo-
nent X gen = Q(ξ , ygen, z) . While for image encoding a 
ResNet-18 backbone [30] without final fully connected 
layer and global average pooling is used, decoding works 
architecturally inverse to that. To integrate the condi-
tions, all batch normalization layers are replaced by con-
ditional batch normalization layers (CBN) [31], where 
the learnable affine parameters of classical batch nor-
malization layers [32] are conditioned on some auxiliary 
variable a . In our case, a are embeddings of the condi-
tions y using an embedding function � . In particular, the 
encoder’s CBN layers are conditioned on the embeddings 
related to the input image ain = �(yin) . In contrast, the 
decoder’s CBN layers are conditioned on the embeddings 
related to the image to be generated agen = �(ygen) . Spe-
cifically, the embedding function is condition-type-spe-
cific since y can consist of conditions of up to 3 different 
types: discrete temporal information t, categorical class 
information c, and continuous variables b . So individual 
embeddings are performed for each type of condition in 
y , which are then concatenated to a.

Here, the temporal embedding �t consists of positional 
encoding of discrete time points followed by a two-
layer MLP with a sigmoid linear unit (SiLU) function in 
between. The class embedding �c represents a classic 
lookup table embedding that maps indices of categori-
cal class variables to a continuous vector representation. 
To embed a vector of continuous values in �b , a two-
layer MLP with SiLU function in between is used. In the 
experiments, the conditions c and b are not always used, 
then embedding and resp. concatenating of unused con-
ditions is omitted. Notably, tin/tgen and cin/cgen are sca-
lars representing in this work time (t) and treatment (c), 
respectively, while bin/bgen are vectors, and in this work 
are 2-dimensional due to SW and FB biomass. However, 
after embedding the individual components of y , it is 

(3)

yin = [tin, cin, bin],

ygen = [tgen, cgen, bgen]

ain = [�t(tin),�c(cin),�b(bin)],

agen = [�t(tgen),�c(cgen),�b(bgen)]

ensured that �t(t) , �c(c) , and �a(b) all represent con-
tinuous vectors of the same 64-dimensional embedding 
size, which avoid prior weighting of different conditions. 
Besides, CBN has already included a linear embedding 
for all conditions, but the additional condition-type-spe-
cific embedding has stabilized the training process.

To also incorporate stochasticity into the network, a 
random 128-dim noise vector z ∼ N (0, 1) ∈ Z is gener-
ated and via noise mapping network  inspired 
by StyleGAN [33] projected to the latent code w ∈ W , 
that matches the channel dimension of the latent repre-
sentation ξ . The mapping network  is a shallow three-
layer linear embedding network, which gradually projects 
the 128-dimensional z to the 512-dimensional w , which 
corresponds to the channel size of the ResNet-18 latent 
representation. After repeating w for the spatial dimen-
sion (global average pooling is omitted), it is finally added 
to ξ.

Critic The critic takes either the generated X gen or ref-
erence image X ref along with the input image X in , and 
the conditions y as input. The images are concatenated 
channel-wise in the input and initially passed through 
a convolutional layer and LeakyReLU activation. This 
is followed by several convolutional blocks consisting 
of a convolutional layer, instance normalization, and 
LeakyReLU up to a spatial dimension of [16× 16] . Since 
batch normalization should be avoided in the Wasser-
stein critic [28], the conditions are not integrated in this 
case with CBN. Instead, each condition is first embed-
ded to dimension 256 with a different embedding func-
tion � than � in the generator, but the architecture of the 
embedding functions inside � and � are the same. Then, 
embedded conditions are reshaped, and channel-wise 
concatenated to the intermediate critic representation 
of spatial size [16× 16] . Note that here, the conditions of 
both the input and the image to be generated are concat-
enated. From this concatenated representation, the final 
score is generated with further convolutional blocks. 
Previous experiments have shown that the training con-
verges significantly better with an intermediate fusion 
of the conditions than with a fusion directly in the critic 
input.

Optimization and hyperparameter
The data sampling is special since multiple reference 
images can be used for every input image due to the pos-
sibility of temporal conditioning. Thus, in each epoch, we 
first iterate classically over all training images, which are 
then used as input images. Second, always another ran-
dom image of the same plant is sampled for each input 
image, representing the reference plant. The conditions 
yin and ygen are drawn according to the sampled images. 
This causes that during the training, cin = cgen because 
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the treatment class does not change over time. To calcu-
late test scores, the sampling procedure is identical, i.e., 
each test image represents an input image once and gets 
assigned a random growth stage as the reference image 
to be generated. For inference, the conditions can be var-
ied arbitrarily, what we call data-driven simulation. So a 
treatment change cin  = cgen is possible, b does not have 
to fit the reference values, and t can deviate from the 
training range.

Adam optimizer is used with a learning rate of 1e-4 for 
both Gθ and Dδ optimization. Regardless of the number 
of conditions, the models are trained for 5000 epochs, 
after which the best epoch is selected based on the low-
est LPIPS on the validation data. As image augmenta-
tions, horizontal and vertical flipping, 90◦ rotations, 
slight translations within a random affine transformation, 
and ShadowOut, which is a semi-transparent version of 
CutOut [34], are applied simultaneously to input and ref-
erence or generated image. Using a single NVIDIA A100-
PCIE-40GB and a batch size of 64, the training duration 
is between 13 day and 35 day, depending on the dataset 
size.

Evaluation of image quality
To evaluate the quality of the generated images, we use 
a well-established set of GAN evaluation metrics. For 
the direct comparison between generated and reference 
images of the same time point, we use the Multi-scale 
Structural Similarity Index Measure (MS-SSIM [35], 
optimal: 1) and the Learned Perceptual Image Patch 
Similarity (LPIPS [36], optimal: 0). While MS-SSIM com-
pares the generated with the reference image directly at 
different resolutions of the image space, LPIPS evaluates 
the similarity of image patch activations in the VGG-
embedded latent space, which has been shown to have 
a high correlation with human perception. In addition, 
the Fréchet Inception Distance (FID [37], optimal: 0) is 
used to compare not only the quality but also the diver-
sity of the generated image distribution with the real 
image distribution of the test dataset. However, for long-
term predictions far into the future or past, generated 
and reference images are not expected to match at the 
pixel level. This is because of the significant difference in 
the growth stage of the input image and the image to be 
generated. Although FID will degrade less as long as the 
plants fit into the distribution of each growth stage, poor 
results are expected for MS-SSIM and LPIPS in such 
cases. To evaluate whether useful plant-related traits can 
still be derived, we use growth estimation models, which 
determine leaf area (see Estimation of projected leaf area 
section) and biomass (see Estimation of biomass section) 
from the generated images.

Growth estimation
Depending on the dataset and plant type, growth esti-
mation is realized by instance segmentation to estimate 
projected leaf area or by image regression to estimate 
biomass. Both can also be considered plant phenotyping 
based on state-of-the-art neural networks.

Estimation of projected leaf area
For Arabidopsis and GrowliFlower, growth is determined 
using the plant trait projected leaf area (PLA). Both 
datasets are well suited for this purpose because differ-
ent plants do not overlap until advanced growth stages. 
The PLA is derived as an image-wise pixel sum of plant 
segmentations predicted with a Mask R-CNN instance 
segmentation model [38]. For this, two models, with pre-
trained ImageNet weights [39], are fine-tuned on a few 
images of the respective plant dataset, for which refer-
ence segmentation masks are available. By multiplying 
the PLA with the squared dataset-dependent ground 
sample distance (GSD), we report PLA in the unit mm2 
for Arabidopsis and cm2 for GrowliFlower or for compa-
rability normalized in units of %/image, which is achieved 
by dividing the PLA by the image size. In this work, PLA 
is not calculated for the whole image but only out of the 
segmentation predictions for the center plant, which is 
especially relevant for GrowliFlower, where there are, in 
most cases, multiple plants per image. To compare the 
PLA of a single generated and reference image pair, we 
use �PLA = PLAgen − PLAref . For MixedCrop, PLA 
cannot be extracted with sufficient accuracy at the pixel 
level for the individual crop species due to the fine struc-
ture of the wheat ears, enormous plant overlap, and a 
lack of annotated images [40]. The accuracy evaluation of 
the trained instance segmentation models can be found 
in the Accuracy of projected leaf area estimation section.

Estimation of biomass
Instead of PLA, for MixedCrop, dried biomass (BM) in 
tons per hectare [ t ha−1 ] is to be derived from the images 
as a growth indicator, divided into the two mixture spe-
cies spring wheat (SW) and faba bean (FB). To estimate 
both with one model, a ResNet-18 [30] is used, modify-
ing the last linear layer to two output neurons, which are 
activated with ReLU since only positive biomass values 
are possible. The mean squared error (MSE) function 
is used as the loss function. We use weights from a pre-
training with ImageNet [39] and fine-tune on MixedCrop 
images and corresponding reference biomass values. 
These reference biomass values are not actual in-field 
measurements but come from a process-based crop 
growth model for mixtures (see Process-based modeling 
of crop mixtures section) that provides simulated SW 
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and FB biomasses for each image time point. Notably, 
we use the same simulated biomass values used as con-
ditions in the image generation part of the framework. 
However, this dual use is methodologically not critical 
since the image generation and growth estimation parts 
are trained independently of each other. Similar to PLA, 
we use �BM = BMgen − BMref to report biomass devia-
tions between two images. Overall, estimating biomass 
from bird’s eye view imagery has three main challenges 
and inherent sources of error. First, biomass is a 3D 
quantity derived from 2D images. Second, the process-
based crop growth model only estimates dried biomass 
(dry matter) for all growth stages, which is used as a ref-
erence for training the growth estimation model. How-
ever, the images show plants with their actual humidity 
(fresh matter), which changes over time. Third, the simu-
lation result varies only treatment-wise, but even repli-
cates of the same treatments have developed differently 
in the field due to different soil conditions and random 
effects. For the discussion about the biomass estimation 
results and accuracies, see Accuracy of biomass estima-
tion section.

In the evaluation for a whole test set with N images, the 
mean absolute error (MAE) and the mean error (ME) are 
calculated as follows between plant traits (PT) of the gen-
erated and the reference image, whereby either PLA or 
BM serve as PT.

Here, the quantity measure ME indicates whether the PT 
is overall underestimated (ME negative) or overestimated 
(ME positive). For whole agricultural fields, the mean 
error (ME) is informative, in case it is not as important to 
accurately determine the yield of individual field regions 
but rather to evaluate whether the overall mean predic-
tive error for the entire field is low.

(4)
MAE =

∑
N

i=1 |PT
gen
i

− PTref
i
|

N
and

ME =

∑
N

i=1 PT
gen
i

− PTref
i

N

Process‑based modeling of crop mixtures
The process-based crop growth simulations were con-
ducted in SIMPLACE (Scientific Impact Assessment and 
Modeling Platform for Advanced Crop Ecosystem Man-
agement) [41]. Different sub-models in the SIMPLACE 
framework, called “SimComponents”, were combined, 
namely LINTULPhenology, LINTUL5NPKDemand, 
SlimNitrogen, LINTUL5Biomass, SlimRoots, and Slim-
Water, amongst others. An overview of key SimCompo-
nents2 is described in Seidel et  al. [42]. Specifically, the 
biomass per species was calculated by SimComponent 
LINTUL5Biomass, which considers water and nitrogen 
limitation effects on biomass increment. The mixture 
model was developed in the SIMPLACE framework and 
simulates the splitting of solar radiation according to the 
competition of the two species and the water and nitro-
gen uptake of two crop species planted in a mixture. The 
model was calibrated and tested on three environments 
(CKA 2020, 2021, and WG 2020) based on collected data 
from the crops cultivated solely and evaluated based on 
the data in the mixture treatments.

Results and discussions
In this section, the results of the growth estimation mod-
els are described at the beginning, as the accuracies of 
these models are needed to discuss the image genera-
tion results. In the following, we first show the results 
of image generation with only temporal variation, which 
allows a comparison with reference data, then simula-
tions with further changed conditions, and finally, the 
transferability to another experimental site.

Accuracy of projected leaf area estimation

Instance segmentation, used to derive PLA (projected 
leaf area), is trained on a small subset of the correspond-
ing datasets for which reference segmentation masks are 
available. The exact numbers for all datasets are at the 
bottom of Table 1. The reference masks of the specified 
test set are used to run the evaluation in Table 2. It shows 

Table 2 Mask R-CNN instance segmentation accuracies for the real (non-generated) images of the test set divided into bounding 
box and segmentation. Overall average precision (AP), with thresholds at IoU = 0.50 and IoU = 0.75 , and overall average recall (AR) are 
given

Bounding box Segmentation

AP AP@0.50 AP@0.75 AR AP AP@0.50 AP@0.75 AR

Arabidopsis 0.92 0.99 0.99 0.95 0.77 0.99 0.98 0.78

GrowliFlower 0.86 0.96 0.92 0.88 0.78 0.97 0.92 0.82

2 More information about SIMPLACE components: https:// www. simpl ace. 
net/ index. php/ docum entat ion

https://www.simplace.net/index.php/documentation
https://www.simplace.net/index.php/documentation


Page 10 of 28Drees et al. Plant Methods           (2024) 20:93 

the instance segmentation accuracies using the measures 
AP and AR, which correlates with the PLA’s accuracy due 
to the direct derivation from these. The GrowliFlower 
accuracies are comparable to the results of Kierdorf et al. 
[25], i.e., sufficient to evaluate cauliflower growth. Arabi-
dopsis has a higher AP and AR for bounding boxes and is 
at a comparable high level to GrowliFlower for segmenta-
tion; thus, it is also adequate to determine PLA.

Accuracy of biomass estimation
The accuracy of dried biomass estimation for both 
MixedCrop sites is given in Table  3. For mixtures the 
MAE is between 0.126 t ha−1 and 0.142 t ha−1 for SW and 
between 0.105 t ha−1 and 0.125 t ha−1 for FB. Notably, the 
ME is less than −0.01 t ha−1 for mixtures at CKA and less 
than −0.03 t ha−1 at WG for both species. For the mono-
culture reference fields, the MAE is 0.179 t ha−1 for FB in 
the FB monocultures and 0.188 t ha−1 for SW in the SW 
monocultures. This is slightly higher than in the mix-
tures, which is expected because, in the monocultures, 

more of each species grows in absolute terms than in the 
mixtures. In return, the mixtures generally have a higher 
total biomass [26]. The low estimation of SW on FB mon-
ocultures between 0.001 t ha−1 and 0.018 t ha−1 and vice 
versa FB on SW monocultures between 0.003 t ha−1 and 
0.017 t ha−1 can be considered as additional evidence 
that the model is able to distinguish the species with high 
accuracy. It can be assumed that a common weed found 
in both fields, Chenopodium album, which bears par-
tial similarity to FB, is often incorrectly identified as FB. 
The mean absolute error (MAE) will be lower if there are 
fewer weeds or if it is included in the growth estimation 
model.

In Fig. 3, the overall results for CKA are visualized as 
two scatter plots for SW and FB, where the image-based 
estimations are plotted against the process-based pre-
dictions used as reference. The regression line is close 
to the optimal line with a minimal underestimation for 
SW ( ME = −0.026 t ha−1 ) and a minimal overestima-
tion ( ME = 0.005 t ha−1 ) for FB. In total, the regression 

Table 3 Biomass estimation accuracies assessed by MAE and ME between the estimations from the real (non-generated) images of 
the test set and the values from the process-based predictions

The scores are separated for mixtures and SW resp. FB monocultural fields. All units are given in t ha−1
.

SW/FB Mix SW mono FB mono Overall

MAE ME MAE ME MAE ME MAE ME

Mixed-CKA SW 0.142 − 0.006 0.188 − 0.074 0.001 0.001 0.142 − 0.026

FB 0.125 − 0.008 0.017 0.017 0.179 0.052 0.097 0.005

Mixed-WG SW 0.126 − 0.023 0.150 − 0.050 0.018 0.018 0.122 − 0.027

FB 0.105 − 0.026 0.003 0.003 0.185 -0.046 0.082 − 0.019

Fig. 3 Scatter results of dried biomass estimation from real Mixed-CKA imagery overall growth stages and treatments (mixtures and monocultural 
fields) split up in spring wheat (SW) and faba bean (FB). The process-based predictions are used as a reference. The regression line is shown in red, 
and the optimal line is in black
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results are MAE = 0.14 t ha−1 and R2 = 0.99 for SW and 
MAE = 0.10 t ha−1 and R2 = 0.98 for FB. With this, the 
model is considered accurate enough to evaluate gener-
ated images.

When assessing the following results, it is impor-
tant to consider that they strongly rely on the accu-
racy of the growth estimation models. The accuracy of 
these models is evaluated solely based on real reference 
images. Any discrepancy between the growth estimation 
of real  images and data-driven predictions   of the same 
growth stage can be attributed to two factors. Firstly, it 
could be due to actual differences in plant phenotypes 
compared to the reference images. This is the deviation 
we aim to identify. Secondly, part of the deviation may be 
caused by potential minor corruptions or artifacts in the 
artificial images, even if they pass GAN evaluation met-
rics. These corruptions can lead to incorrect estimations 
by the growth estimation model despite the visible plant 
phenotypes in the artificial images being accurate. This is 
because the growth estimation model was not trained on 
corrupted images. While it is hardly possible to avoid the 
second source of deviation completely, we strive to mini-
mize it by augmenting the data used to train the growth 
estimation model, making it more robust and less suscep-
tible to corruption. The magnitude of the deviation can 
be determined for certain growth stages by comparing 
the biomass estimation of real  images with data-driven 
predictions  of the same growth stage as shown on the 
right in Fig. 7.

Time-varying image generation
The first image generation experiment intends to evaluate 
how accurately our framework predicts images of other 
plant growth stages, given an input image and a different 
amount of conditions used for training, as indicated in 
Table  4. For each prediction, conditions that match the 
input image are used, and a varying prediction time and 

the corresponding reference image are randomly picked. 
Multiple models are trained on the different datasets and 
with a varying combination of conditions, namely time 
(t), treatment (trt), and simulated biomass (bm).

In Table  4, the predicted image quality is evaluated 
using the metrics MS-SSIM, LPIPS, and FID. Across all 
predictions, the highest accuracies are obtained with the 
Arabidopsis dataset for all three metrics MS-SSIM = 0.8 , 
LPIPS = 0.25 , and FID = 6.54 , while similarly lower 
overall accuracies are obtained with the GrowliFlower 
and MixedCrop datasets. For these, the MS-SSIM is 
between 0.29 and 0.31, LPIPS is between 0.46 and 0.51, 
and FID is between 16.26 and 24.86. Particularly remark-
able is the dependence of the accuracy on the predic-
tion distance, where MS-SSIM is higher for all datasets, 
the smaller |�t| . In the case of �t = 0 , the model acts as 
an autoencoder, reproducing the input, also known as 
identity mapping. The identity mapping results show an 
MS-SSIM of 0.94 for Arabidopsis and MS-SSIM values 
between 0.97 and 0.99 for the Mixed-CKA models. From 
short-term (ST) to long-term (LT) predictions, the MS-
SSIM continuously decreases to 0.20.

It is noticeable that Arabidopsis has better values in all 
metrics except T0 than GrowliFlower and Mixed-CKA, 
which can be attributed to the daily recording times and 
controlled laboratory conditions with constant light and 
no weather effects. The identity mapping ( T0 ) is worse 
than the other datasets because, in the Arabidopsis data-
set, multiple images were taken per day, which means 
it is not a strict identity mapping. However, this can be 
altered by changing the model time unit from days to 
hours. The MS-SSIM decrease from T0 over ST to LT 
means the less far the model predicts into the future or 
past, the better the predicted images match the reference. 
Particularly, an MS-SSIM below 0.3 implies less similar-
ity between predicted and reference images. In parallel, 
the FID for all models, including ST and LT predictions, 

Table 4 Evaluation with metrics MS-SSIM, LPIPS, and FID. Each row represents a distinct \ac{igm} trained on a varying combination of 
conditions time (t), treatment (trt), and simulated biomass (bm); for testing, only the input image and t are varied. MS-SSIM is reported 
for generations with different |�t| filters: T0 : identity |�t| = 0 ; ST: short-term 1 ≤ |�t| ≤ 10 ; LT: long-term |�t| ≥ 11.

1 Transferability check: Model trained on Mixed-CKA and applied to Mixed-WG

Train conds. MS-SSIM ( ↑) LPIPS ( ↓) FID ( ↓)

t trt bm T0 ST LT ø ø ø

Arabidopsis �  ×  × 0.94 0.81 0.68 0.80 0.25 6.54

GrowliFlower �  ×  × 0.98 0.30 0.20 0.29 0.51 20.17

Mixed-CKA �  ×  × 0.99 0.23 0.22 0.30 0.46 20.44

Mixed-CKA �  �  × 0.97 0.25 0.23 0.31 0.47 16.26

Mixed-CKA �  �  � 0.99 0.23 0.22 0.29 0.46 24.86

Mixed-WG1 �  ×  × 0.92 0.13 0.11 0.20 0.50 40.67
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is below 25, which can be considered good image qual-
ity. This is expected because, with increasing prediction 
steps, detailed plant phenotype appearances, like leaf 
counts and orientations, are increasingly difficult to pre-
dict. In contrast, general structural traits, like plant posi-
tions and overall sizes, can be predicted more accurately.

Insight into the usability of predicted images can be 
drawn from the plant-specific evaluation results using 
projected leaf area (PLA) estimation for Arabidopsis and 
GrowliFlower and biomass (BM) estimation for MixedCrop. 
Table  5 shows the obtained results for Arabidopsis and 
GrowliFlower in Table 5. It can be seen that MAE increases 
with larger |�t| in both cases, but the overall accuracy of 
< 1% is high for Arabidopsis and with < 10% slightly lower 
for GrowliFlower. In addition, for Arabidopsis, a mean error 
of −0.32% ≈ −11mm2 indicates a small mean underes-
timation, while GrowliFlower heads are predicted larger 
ME = 1.27% ≈ 80 cm2 than the corresponding reference.

The biomass evaluation for Mixed-CKA in Table  6 is 
divided into models trained with different conditions. All 
scores are given separately for SW and FB; moreover, an 
average over all plots and all mixture plots is reported. 
The MAE separation into different prediction distances 
shows that for T0 the lowest deviations occur with a 

small increase to ST, but a decrease (accuracy gain) for 
LT over ST. The overall MAE ranges from 0.13 t ha−1 to 
0.38 t ha−1 and is comparable to Mix MAE, where only 
mixtures are considered. Thereby, overall SW MAE is 
always higher than FB MAE with a magnitude of up to 
0.1 t/h . Noticeably, overall FB ME is negative while SW 
ME is positive for all models except those trained on 
all conditions, showing a systematic SW over- and a FB 
underestimation. With an increasing number of con-
ditions, the overall MAE decreases significantly by 
0.2 t ha−1 for SW and 0.15 t ha−1 for FB. Comparing the 
accuracy when biomass estimation is performed on pre-
dicted mixtures (last two columns of Table  6) with the 
accuracy when it is performed on real mixtures (first 
two columns of Table 3) two results are shown: First, the 
MAE of the predicted mixtures using the model with all 
conditions is slightly above the MAE of the real mixtures 
(SW: +0.04 t ha−1 , FB: +0.03 t ha−1 ). The other models 
trained with fewer conditions show higher deviations up 
to +0.17 t ha−1 for SW and +0.13 t ha−1 for FB. Second, 
the ME of the predicted mixtures using the model with 
all conditions is by a magnitude of 5 above the ME of the 
real mixtures.

Table 5 Plant-specific evaluation of projected leaf area (PLA) assessed by MAE and ME in the unit %/image. Both image generation 
models are trained solely on the temporal condition (t). MAE is reported for generations with different |�t| filters: T0 : identity |�t| = 0 ; 
ST: short-term 1 ≤ |�t| ≤ 10 ; LT: long-term |�t| ≥ 11

Train conds. MAE ME

t trt bm T0 ST LT ø ø

Arabidopsis �  ×  × 0.27 0.76 1.44 0.82 − 0.32

GrowliFlower �  ×  × 6.41 8.84 10.18 9.64 1.27

Table 6 Plant-specific evaluation of mixture biomasses (SW/FB) assessed by MAE and ME in the unit t ha−1 given for all (OA) and 
mixture (Mix) fields. Each row represents a distinct image generation model trained on a varying combination of conditions time 
(t), treatment (trt), and simulated biomass (bm); for testing, only the input image and t are varied. Overall fields, MAE is reported for 
generations with different |�t| filters: T0 : identity |�t| = 0 ; ST: short-term 1 ≤ |�t| ≤ 10 ; LT: long-term |�t| ≥ 11

1 Transferability check: Model trained on Mixed-CKA and applied to Mixed-WG

Train OA OA Mix Mix

conds. MAE ME MAE ME

t trt bm T0 ST LT ø ø ø ø

Mixed-CKA �  ×  × SW 0.22 0.42 0.39 0.38 0.12 0.31 0.20

FB 0.16 0.34 0.30 0.28 − 0.12 0.25 − 0.17

Mixed-CKA �  �  × SW 0.30 0.22 0.25 0.24 0.09 0.25 0.15

FB 0.24 0.16 0.19 0.19 − 0.13 0.24 − 0.15

Mixed-CKA �  �  � SW 0.17 0.21 0.18 0.18 − 0.02 0.18 0.05

FB 0.11 0.16 0.14 0.13 − 0.01 0.15 − 0.04

Mixed-WG1 �  ×  × SW 0.45 1.25 1.14 1.07 0.18 1.06 0.24

FB 0.41 0.48 0.67 0.64 − 0.04 0.62 − 0.11
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We provide two assumptions for the SW and FB dif-
ferences in MAE and ME: We assume that having for 
SW a generally higher MAE magnitude than for FB is 
caused by the higher absolute SW biomass level in the 
field. Additionally, we assume the reason for the sys-
tematic overestimation of SW and underestimation of 
FB (indicated by ME) is due to the unbalanced dataset: 
there are significantly more SW than FB monocultures. 
We assume that the image generation model copes worse 
with this unbalanced dataset than the growth estimation 
model, as FB plants are structurally more complex and 
therefore more readily quantifiable but more difficult to 
generate. Besides, MAE and ME decrease significantly 
as more conditions are added to the model. This can be 
explained by the model being better informed about the 
crop growth behavior if it receives more growth-influ-
encing factors and can thus become more accurate. There 
is a loss of accuracy from identity mapping to short-term 
predictions but no significant loss from short-term to 
long-term predictions. Thus, long-term predictions can 
be considered valuable for phenotyping applications.

So, the quantitative evaluation leads to the overall 
finding: Although the predicted images match the ref-
erence images less at large |�t| , they represent realistic 
plants of their respective growth stage, as indicated by 
FID, and are still accurate enough to derive reasonable 
plant traits, as indicated by plant-specific evaluation.

Further findings can be drawn from qualitative results 
showing selected time-varying image generation results 
in Fig.  4 for Arabidopsis, Fig.  5 for GrowliFlower, and 

Fig.  6 for Mixed-CKA, where models are used that are 
trained on the temporal condition only. Each figure con-
sists of 5 rows: The first row contains a reference plant 
over time, where an early growth stage with a cyan frame 
is the input to the model in each case. The second row 
shows generated images by keeping except time all other 
conditions, including noise z , constant. The third row 
shows the variability image, which is the standard devia-
tion over ten predictions of the same time point with dif-
ferent z , whereby the standard deviation is averaged over 
all RGB channels and overdrawn by a factor of four for 
clearer visualization. The darker the blue, the greater the 
variability for each pixel within the ten predictions. The 
fourth and fifth rows show each gen-ref image pair’s clas-
sical and plant-specific evaluation metrics.

For all datasets and time points, the predictions are 
realistic, with a few exceptions, such as the last image of 
GrowliFlower. Comparing the variability images, Arabi-
dopsis has the lowest pixel-wise standard deviation, fol-
lowed by MixedCrop and GrowliFlower. In all cases, 
there is high variability at the leaf edges, where the actual 
uncertainty is greatest. The LPIPS and MS-SSIM dete-
riorate with increasing �t with a peak each for identity 
mapping. Plant property curves differ for each data set: 
In Arabidopsis, �PLA is close to zero until 30 DAS and 
then drifts into the negative range, indicating a leaf area 
underestimation for advanced growth stages. In Growli-
Flower, the curve is close to zero with small fluctuations 
except for a large negative peak at 57 DAP, indicating 
that the leaf area could not be correctly estimated from 

Fig. 4 Time-varying image generation for Arabidopsis with, in the top row, reference images with an early growth stage as input (cyan frame), 
in the second row, all day-wise generated predictions, and, in the third row, standard deviation images over ten predictions with different noise 
input z and otherwise constant input conditions. The two bottom rows have the quality metrics: learned perceptual image patch similarity (LPIPS), 
multiscale structural similarity (MS-SSIM), and the projected leaf area difference ( �PLA)
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the predicted image of this day. Similarly, for Mixed-
CKA, the curves stay around zero until day 99, after 
which SW biomass is significantly overestimated with up 
to +2.5t ha−1 and FB biomass is significantly underesti-
mated with up to −2.5 t ha−1.

Two important insights emerge from the visualized 
images. First, a strong consistency of the generated 
images over time is given, which is visible in Arabi-
dopsis and GrowliFlower through leaf orientations but 
also through neighboring plants and in Mixed-CKA 
through certain crop patterns such as small gaps (sec-
ond crop row, right) or weeds (third and fourth crop 
row, center). Second, the dependence of the generated 
images on the input is visible for all datasets, particu-
larly in the position of the plants and crop rows and 
by granules on the ground, which can be found on the 
input image as well as on several generated images. 
While the variability images show realistic uncertain-
ties at the leaf edges, they also reveal a limitation in 
the image generation: While the identity mapping has 
no or extremely low variability, as expected, no con-
tinuous increase in variability over time is evident, 
leading to overconfidence at large �t where variabil-
ity would be expected to be significantly higher. The 

parallel examination of MS-SSIM and LPIPS with the 
images confirms the findings from the quantitative 
results: Despite the images being less consistent with 
the reference as the prediction distance increases, 
there is neither a general visual quality decrease nor a 
general decrease in the accuracy of the estimated plant 
traits for time-varying predictions.

An overview of predictions for days not present in 
the datasets, so temporally out-of-distribution (OOD) 
can be found in Appendix B. While challenging due to 
large spectral differences between images of existing 
time points, it can be shown that realistic images can 
still be generated at new time points.

Comparison of the process-based and the data-driven crop 
growth model
Since there are independent reference measurements 
of the dried biomass (“cutting reference”) for all plots at 
time 83DAS for Mixed-CKA, we can compare the pro-
cess-based and the data-driven crop growth model pre-
dictions. For both models, we use the time point 82DAS 
after sowing as the prediction target, the closest image 
acquisition time before the biomass cuts. We select time 
point 28DAS as the image input of the data-driven model 
because it is the first time crops are recognizable on the 

Fig. 5 Time-varying image generation for GrowliFlower with, in the top row, reference images with an early growth stage as input (cyan frame), 
in the second row, all day-wise generated predictions, and, in the third row, standard deviation images over ten predictions with different noise 
input z and otherwise constant input conditions. The two bottom rows show the quality metrics: learned perceptual image patch similarity (LPIPS), 
multiscale structural similarity (MS-SSIM), and the projected leaf area difference ( �PLA)
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images (cf. Fig.  2). As a further input condition, we use 
the treatment information, which is also available to the 
process-based model, but not the biomass information, 
which is only available retrospectively. Two aspects have 
to be taken into account in the comparison. Firstly, the 
starting conditions are not identical because the image-
based model requires an input image from a previous 
growth stage. In contrast, the process-based model does 
not require an input image. Secondly, the models are not 
independent because the growth estimation part of the 
data-driven model was trained with the output of the 
process-based model. As a result, the data-driven model 
is expected to achieve at best the same accuracy as the 
process-based model when compared with the cutting 
reference, provided the generated images are of adequate 
quality. The latter is verified by comparing the estimated 
biomass from the data-driven prediction (generated 
images) with the estimated biomass from the real images 
from the reference day (82  DAS). If the data-driven 
model provides realistic predictions and the generated 
images are of a quality that is suitable for plant phenotyp-
ing, a high correlation can be expected.

In Fig.  7, the treatment-wise comparison between the 
process-based predictions and the cutting reference is 
shown on the left, between the data-driven predictions 

and the cutting reference in the middle, and between the 
data-driven predictions and the real image estimations 
on the right. The top row shows the SW and the bot-
tom row the FB biomasses. Two clusters can be seen in 
all plots: The blob with the higher biomass contains the 
monocultures, while the lower biomass clusters represent 
the mixtures. The process-based model deviates from 
the cutting reference for SW with MAE = 0.95 t ha−1 
( R2 = 0.67 ) and for FB with MAE = 0.30 t ha−1 
( R2 = 0.92 ). The pattern is similar for the data-driven 
model, for SW with MAE = 0.95 t ha−1 ( R2 = 0.69 ) and 
for FB with MAE = 0.28 t ha−1 ( R2 = 0.95 ). Overall, 
there are significantly larger MAE for SW than for FB. 
In addition, the prediction range for SW is significantly 
narrower than the cutting reference range for both the 
process-based and the data-driven prediction. Focusing 
on the mixtures, the predicted values range between 3.2 
and 4 t ha−1 while for the cutting reference, they range 
between 2.4 and 5 t ha−1 . This means that the actual 
measured variability of SW biomass between treatments 
is significantly larger than the predicted variability, both 
process-based and data-driven. Remarkably, the mean 
value 3.7 t ha−1 is identical for both models and the cut-
ting reference. The comparison between the data-driven 

Fig. 6 Time-varying image generation for Mixed-CKA with, in the top row, reference images with an early growth stage as input (cyan frame), 
in the second row, all day-wise generated predictions, and, in the third row, standard deviation images over ten predictions with different noise 
input z and otherwise constant input conditions. The two bottom rows show the quality metrics: learned perceptual image patch similarity (LPIPS), 
multiscale structural similarity (MS-SSIM), and the biomass differences for spring wheat ( �BMSW ) and faba bean ( �BMFB)
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prediction and the estimation from the real images at 
time 82 DAS on the right side in Fig. 7 shows only a small 
MAE = 0.08 t ha−1 and a high R2 = 0.99 for both SW 
and FB. This means that the MAE for this time point is 
0.06 t ha−1 (SW) resp. 0.02 t ha−1 (FB) lower than in the 
comparison of all time points of the process-based model 
with the estimation from real images (cf. Fig. 3). The red 
regression line indicates that overall SW is slightly over- 
and FB slightly underestimated, which is already analyzed 
in Time-varying image generation  section.

Some findings can be taken away from the compari-
sons: Mainly: process-based and data-driven models 
achieve similar accuracy, despite the long-term predic-
tion 54 days into the future. Both models can quantify 
differences between mixtures and monocultures of 
the same growth stage but are hardly sensitive to dif-
ferences between the mixture treatments. They only 
achieve the prediction of a correct mean value, which 
can be explained by the fact that many cultivar differ-
ences occur randomly and are not significant [43]. In 
general, a machine learning model (growth estimation 
from images) can hardly be better than the training 

data (process-based output), which accounts for the 
similar pattern in the left and middle scatter plots. If 
there were other biomass reference data for each time 
point, we could use it to train the growth estimation 
model and become completely independent of the pro-
cess-based model. It is conceivable that such biomass 
reference data might be available in the future and out-
perform the process-based model as it is trained with 
measurements instead of simulations. However, these 
biomass reference data would need to be available in 
advance and ideally be highly diverse to allow generali-
zation across different environments.

Data-driven simulation using treatment information
The data-driven simulations on the MixedCrop dataset 
are intended to show the flexibility of the image genera-
tion model in the presence of changing growth-influenc-
ing variables. To enable an illustrative and informative 
demonstration and visualization, we systematically vary 
the time (t) and treatment (trt) information as a condi-
tion for the Mixed-CKA dataset. We use the results to 
investigate and evaluate how different treatments appear 

Fig. 7 Scattering of model predictions for time 82DAS (left: process-based, middle: data-driven) with in-field biomass measurements (“cutting 
reference”) at time 83DAS . On the right, the same data-driven predictions are compared with the estimates from real images at time 82DAS
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in the future when something about the treatment 
changes starting from a certain initial condition (image). 
We would like to emphasize that the change in treat-
ments performed is intended to evaluate the method and 
is thus limited in its realistic nature, yet aims to show that 
our framework applies to realistic scenarios. We expect 
that the estimated biomass from the data-driven simula-
tion changes in the same direction as that of the process-
based plant growth model, confirming the reliability of 
the image generations.

In particular, two simulations are conducted from 
the input time point of 28DAS to 54 DAS where first, 
the seed density is changed from low (L) to high (H) 
(Fig.  8), and second, the faba bean cultivar is changed 
from Mallory (A) to Fanfare (B) (Fig. 9). Thus, the input 
image is encoded in the original treatment, but a treat-
ment change is made to decode the simulated future 
plant phenotype. The figures compare the data-driven 
prediction without treatment change (filled bars) with 
the prediction including treatment change (hashed 

bars) and the process-based predictions for the respec-
tive target treatment (red dots). The bars represent the 
treatment-wise mean, and the black lines are the stand-
ard deviation. We deliberately chose an early stage as 
the input because the differences in biomass between 
the treatments are not yet too great, and differences 
between the FB varieties are hardly discernible. How-
ever, we do not use DAS=7, which is bare soil, because 
we want to observe the spatial development of the 
crops. In addition, we focus on mixtures in the simula-
tions to analyze the biomass of spring wheat and faba 
bean in parallel.

Focusing on the simulation of L → H in Fig. 8, the data-
driven estimated biomass of the high-density simulated 
treatments (hashed bars) is higher than that of the low-
density simulated ones (filled bars) for SW in 20/24 cases 
and for FB in 16/24 cases. The process-based biomass 
gain from L → H, shown by the red dots, is for SW sig-
nificantly higher ( 0.25 t ha−1 ) than for FB ( < 0.1 t ha−1 ). 
Averaged across all treatments, the biomass increases for 

Fig. 8 Simulating the SW (top) and FB (bottom) change from a low (L) density to a high (H) density treatment for all mixture field plots 
and the growth prediction step 28DAS to 54 DAS . While filled bars represent the comparative prediction under the original treatment, hashed 
bars represent the simulated treatment change. Black lines symbolize the standard deviation across treatment replicates; red dots symbolize 
the outcome of the process-based crop growth model for the resp. treatments and 54 DAS
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both SW and FB. Apparently, FB biomass is slightly over-
estimated compared to the reference in almost all cases, 
and SW biomass is often overestimated for the L → L 
simulation while underestimated for L → H.

The analysis of the simulation of faba bean cultivar A → 
B in Fig. 9 is more challenging because only a small loss 
of biomass is expected for FB and an even smaller one 
for SW (almost the same level), as shown by the red dots. 
Treatment-wise, this decrease is not visible for either SW 
or FB: Only slightly more than half of the treatments is 
the hashed bar smaller than the filled bar for both SW 
(13/24) and FB (15/24). In average over all treatments, 
the hashed bars are smaller than the filled bares, albeit in 
the range of the standard deviation. Comparing high and 
low-density treatments, it can be seen that the estimated 
biomass from the high-density treatments is higher for 
SW in 10/12 cases and for FB in 7/12 cases.

Both simulation results show that even small changes 
in the growth-influencing factors affect the predicted 
images. Thereby, the reliability of the simulations is 

supported by the overall biomass increase from L → H 
treatments and decrease from faba bean cultivar A → 
B. If the biomass change (filled to hashed bar) for indi-
vidual treatments does not correspond to the expected 
change (red dots), there are three possible interpreta-
tions. First, although the treatment condition is consid-
ered in the image generation model, its influence might 
not be strong enough, so the differences in the generated 
images are not sufficiently prominent. Second, the den-
sity resp. cultivar appearance of the input image might 
already be too prominent, making it difficult to change 
the growth stage later; e.g., plants cannot arise from 
anywhere. Third, the differences between low and high-
density treatments resp. faba bean cultivars A and B are 
less clear in reality than the dynamic crop growth model 
suggests. In fact, the FB biomass gain for L → H and the 
FB/SW biomass loss for A → B is below the accuracy 
level of the biomass estimation (compare Table 6, which 
can explain why a clear trend in biomass changes is not 
particularly apparent for these cases. Apart from this 

Fig. 9 Simulating the SW (top) and FB (bottom) change from faba bean cultivar Mallory (A) to cultivar Fanfare (B) for all mixture field plots 
and the growth prediction step 28DAS to 54 DAS . While filled bars represent the comparative prediction under the original treatment, hashed 
bars represent the simulated treatment change. Black lines symbolize the standard deviation across treatment replicates; red dots symbolize 
the outcome of the process-based crop growth model for the resp. treatments and 54 DAS
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specific experiment, we see the potential to simulate fur-
ther treatment changes or their effects, e.g., weed cover. 
This varies over the growing season and can be estimated 
quickly in categorical measures (low, medium, high), 
allowing crop growth predictions adapted to current field 
conditions.

Figure 10 also qualitatively illustrates the structural dif-
ferences in the crop rows when simulating different treat-
ments. Besides the growth prediction step from 28DAS 

to 54 DAS , two more growth prediction steps and two 
more treatment variations are simulated, including more 
unlikely scenarios, such as transformations of mixtures to 
monocultures. While such simulations rarely make sense 
from an application point of view, as long as a mixture 
component is not completely suppressed, it is neverthe-
less noteworthy to see the model visualizing such a treat-
ment change if necessary.

Fig. 10 Growth simulation for different prediction steps and treatment changes in Mixed-CKA, first row 28DAS to 45DAS , second row 42DAS 
to 99DAS , and third row 7DAS to 82DAS . The first column shows the input image, the second the corresponding reference image of the future 
growth stage, the third the predicted image at these treatment conditions, and columns 4 to 7 show simulations of change in faba bean cultivar, 
density, and to monocultural reference

Fig. 11 Comparing MAE and ME for image generations from 28DAS to 54 DAS with different expected spring wheat (SW) to faba bean (FB) 
biomass ratios
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Data-driven simulation using process-based biomass
The following biomass simulation is intended to demon-
strate the capability of including dynamic output variables 
of a process-based crop growth model in our framework. 
For this, we use the trained Mixed-CKA model on time (t), 
treatment (trt), and process-based simulated biomass (bm), 
whereby the biomass systematically varied to get predic-
tions for different possible SW and FB biomass ratios. The 
time is randomly varied, so the simulation is performed 
over all growth stages by choosing a random prediction 
time point for each input mixture image and re-adjusting 
its biomass ratio. The starting point for the simulation is the 
biomasses calculated dynamically from the process-based 
crop growth model for each time point and treatment, 
BMSW = BMFB = 100 % . While the image generation 
model was trained with a fixed biomass value attached to 
each reference image, we will demonstrate that almost any 
combination of biomass ratios can be chosen for inference 
as long as they are within the range of the training data.

Figure  11 shows MAE and ME respectively for SW 
and FB and different simulated biomass ratios, where the 
original composition (100:100) is shown in the middle, to 
the left, BMFB increases and to the right BMSW . This is 
accordingly also noticeable in the ME: If the BM fraction 
for SW and FB increases, more biomass is also estimated 
in the predicted image and the ME increases. So MESW 
rises to the right, and the MEFB rises to the left. The MAE 
reaches the minimum error where ME is also minimum 
at about the ratio 55 % SW to 145 % FB.

That a higher SW simulated biomass in the input 
of the framework also leads to a higher SW predic-
tion in the output, for FB, accordingly, shows the reli-
ability of our framework to generate predictions that 
realistically depend on the input conditions. It dem-
onstrates the capability of our framework to generate 
images that plausibly explain the output of a process-
based model. The minimum MAE/ME is not reached at 
100:100, mainly due to the slight dataset bias towards 
SW and the resulting under-prediction of FB plants in 
the images, as already discussed. Assuming an unbi-
ased image generation model, this type of analysis can 
serve to improve the calibration of the process-based 
model and bring it closer to image-based field observa-
tions: If the minimum MAE deviates from the expected 
minimum (in this case, 100:100), the process-based 
crop growth model could be adjusted in this direction 
or, in other words, complemented by the knowledge 
gained from the data-driven model. Note that other 
dynamic growth-influencing variables, like climatic 
conditions, can be used instead of process-based time-
varying biomass, which could lead to even more feasible 
simulations.

Transferability to new site
With a transferability experiment on the MixedCrop 
experiment, we aim to investigate the accuracy drop 
with which the model trained for Mixed-CKA, which 
takes time (t) as input condition, can be applied to the 
Mixed-WG site. The basic requirements are given by the 
same image size, resolution, crop species, and treatments 
(see Data section). However, this attempt to transfer the 
growth behavior of Mixed-CKA to images of Mixed-WG 
poses three main challenges. First, the growth behavior 
of conventionally managed CKA differs substantially 
from that of organically managed WG, as indicated, for 
instance, by weed abundance. Second, the spectral image 
properties are completely different for each time point, so 
both sites have their own “style”. Third, images were not 
taken simultaneously during the growing season at both 
locations, resulting in images from Mixed-WG being 
spatially and temporally out-of-distribution (OOD).

Tables  4 and 6 show the transferability quality meas-
ured by all evaluation metrics in the bottom line each. 
It can be seen that the results show significantly lower 
accuracies than the ones produced by models trained and 
tested on Mixed-CKA. However, the identity predictions 
still show a high MS-SSIM of 0.92.

The reason for the less accurate results lies in the first 
two aforementioned challenges, which lead to the pre-
dicted images not being well comparable to the reference 
images on a quantitative basis. Since the model only knows 
the style of CKA, but the reference images are in the style 
of WG, better scores were not expected. Focusing more on 
qualitative results, the third challenge of temporal OOD 
leads to corrupted results when the input image is sig-
nificantly different from the style of the temporally near-
est CKA image but is otherwise reliable, demonstrated in 
Appendix C. It shows both failed predictions and reason-
able transfer examples, first for time points for which ref-
erence images are available, even if they do not match the 
reference, and second for the entire growing period.

For future experiments, the style could be added as an 
additional condition in the image  generation model, or 
more generally with domain knowledge in the form of 
site-dependent context variables that influence style and 
plant growth itself [44]. While this requires a larger train-
ing dataset spanning multiple sites and styles, it will ensure 
even better transferability and help to merge multiple plant 
time series affected by various factors influencing factors 
into a more generic data-driven crop growth model.

Conclusion
In this work, we have shown the capabilities of multi-
conditional growth simulation using three datasets: 
Arabidopsis, GrowliFlower, and MixedCrop. For this 
purpose, in the first step, we combined several conditions 
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of different types (discrete, continuous, categorical) in 
an image generation model, which is a conditional Was-
serstein generative adversarial network (CWGAN), to 
generate multiple realistic, high-quality images over 
time based on a single input image. In the second step of 
growth estimation, we showed that along with classical 
GAN image evaluation metrics, plant-specific traits such 
as projected leaf area or biomass can be derived from the 
generated images and used for evaluation. The results 
for MixedCrop were compared with a dynamic process-
based crop growth model. Here, the combination of data-
driven crop growth models, which strongly incorporate 
the spatio-temporal above-ground phenotype changes, 
and a process-based crop growth model, which considers 
the theoretical plant growth knowledge, leads to a better 
understanding of the crop mixture dynamics. Quantita-
tive and qualitative simulations provide a comprehensive 
tool to investigate how various treatments influence the 
above-ground phenotype of crop mixtures and their dry 
matter. The experiments show that the dried biomass can 
be estimated more accurately from predicted images the 
more growth influencing factors are considered, such as 
in our case, the field treatment or process-based simu-
lated biomasses. In particular, the integration of pro-
cess-based model output into a data-driven crop growth 
model is shown, which is useful to make crop growth 
predictions more accessible or even to re-calibrate pro-
cess-based models. Incorporating all available conditions 
into the image generation model enables accurate estima-
tion of plant traits in predicted (artificial) images, compa-
rable to the accuracy achieved with real images.

Although the additional variability images show the 
largest uncertainties at the leaf edges, which is realistic, 
we see space for improvement in the uncertainty integra-
tion for long-term growth predictions. Since predictions 
far in the future lead to significant over-confidence in the 
image generation model, the weighting of the stochastic 

and deterministic model input should be adaptively con-
trolled depending on the growth prediction step. In addi-
tion, the challenge of large spectral differences within 
an image sequence and between sites (“dataset styles”) 
should be addressed for better model generalizability.

Appendix A
Overview of MixedCrop cultivars

An overview of the faba bean cultivars and spring 
wheat entities used in the MixedCrop experiment is 
given in Table 7.

Appendix B
Figs. 12, 13 and 14

Table 7 Notation overview of species faba bean (FB) with 
cultivars A and B and spring wheat (SW) with cultivars 1–10 and 
two additional mixed groups used in this work.

FB (Faba bean) A Mallory
B Fanfare

SW (spring wheat) 1 Lennox

2 Anabel

3 Saludo

4 Jasmund

5 Sorbas

6 Quintus

7 KWS Starlight

8 Chamsin

9 Sonett

10 SU Ahab

11 Mix-Group 1

12 Mix-Group 2

Fig. 12 Daily Arabidopsis predictions from 18DAS to 41DAS including temporal OOD images. The input image has a cyan frame, the in-distribution 
images a blue frame, and the OOD images an orange frame
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Temporal out-of-distribution predictions
By temporal out-of-distribution (OOD), we mean 

images of growth stages that do not exist in the training 
dataset. We use the models from the respective data-
set trained only on input image and time as conditions 
and keep the input image and the noise constant for the 
visualizations from the entire growth period. So we iter-
ate over time and generate interpolations if the newly 
generated image lies between two training images and 

extrapolations if it lies temporally off the training period 
(early and late growth phases). The time increases by one 
day per image from top left to bottom right. The input 
image has a cyan frame, the in-distribution images a blue 
frame, and the OOD images an orange frame. While 
challenging to evaluate quantitatively because no refer-
ence images are available, consistency in the time series 
is readily apparent for interpolations. For extrapolations, 
most predictions are also realistic since plants continue 

Fig. 13 Daily GrowliFlower predictions from 0DAP to 73DAP including temporal OOD images. The input image has a cyan frame, 
the in-distribution images a blue frame, and the OOD images an orange frame
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to grow in the short-term extrapolated future. Notably, 
interpolation and extrapolation work for Mixed-WG, 
although the growth stage of the input image is tempo-
rally out-of-distribution. However, there are exceptions, 

e.g., the early growth stages of Arabidopsis are too large, 
and in the third row of Mixed-CKA and Mixed-WG can-
opy appears and vanishes again.

Fig. 14 Daily Mixed-CKA predictions from 0DAS to 121DAS including temporal OOD images. The input image has a cyan frame, the in-distribution 
images a blue frame, and the OOD images an orange frame
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Appendix C
Spatial out-of-distribution predictions

If the image generation model is applied to a site 
on whose plant image time series the model has not 
been trained, it is spatially out-of-distribution. Addi-
tionally, it is likely that the dataset is temporally OOD 
if the drone flyovers did not occur on the same days 
of the growing season, and thus, the time of the new 
input image does not exist in the training data. There, 
transferability fails when the spectral differences 
between the test image and the nearby time points 
in the training dataset are too large, such as 29DAS 

of Mixed-WG, as Fig.  15 illustrates. Some of the pre-
dicted images become blurry, and holes appear in the 
crop rows, which also causes the biomass estimation 
to give unreliable, non-usable results. Likewise, Fig. 16 
demonstrates that the model can produce reasonable 
results despite spatio-temporal OOD, where, compared 
to Fig.  15, the same field patch but a different input 
image (21 days later) is used. Realistic results can also 
be achieved when not only the input image but also 
the images to be predicted are temporally and spatially 
OOD, as depicted in Fig. 17.

Fig. 15 Transferability fails with predictions for Mixed-WG caused by input image 29DAS lying spectrally too far out of the training distribution 
(Mixed-CKA images)
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Fig. 16 Transferability with prediction results for Mixed-WG input image 50DAS lying spectrally less far away from the 54 DAS-images 
of the training distribution (Mixed-CKA). The predicted images are qualitatively appealing, but they do not compare well with the reference 
because the crops of Mixed-CKA and Mixed-WG have different growth patterns
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