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A B S T R A C T   

The aim of this study is to comparatively analyze the performance of machine learning (ML) algorithms for 
modeling soil salinity using field-based electrical conductivity (EC) data and Landsat-8 OLI satellite images with 
derived environmental covariates. We also aim to interpret and explain the ML models with and without over- 
sampling methods using Shapley (SHAP) values, an explainable ML approach that has not yet been utilized for 
soil salinity estimation tasks as an ML problem. We investigate two case study areas from western and south-
eastern Lake Urmia Playas (LUP) in the Northwest of Iran. Our study uses 26 environmental covariates, two ML 
models, namely extreme gradient boosting (XGBoost) and random forest (RF), and two over-sampling methods: 
synthetic minority over-sampling technique (SMOTE) and random over-sampling (ROS). Results indicate that 
XGBoost performs better compared to RF in terms of both R2 and RMSE. Additionally, the visual interpretation of 
soil salinity maps demonstrated the superiority of XGBoost. SMOTE produced superior results than ROS and no 
over-sampling test cases. Finally, SHAP analysis illustrated that vegetation indices made a greater contribution to 
the soil salinity prediction in the West LUP, while visible bands contributed more in the Southeast LUP Region.   

1. Introduction 

Soil is the environment for habitats, with wide biodiversity extend-
ing from micro to macro scales. Water is an essential natural resource 
directly affecting life on and in the soil (Brevik et al., 2015). Healthy soil 
is vital for plant growth, meeting the nutritional needs of people, and 
water filtration. In addition, it supports land to be more resilient against 
disasters such as floods, droughts, and fires and plays a role in regulating 
climatic conditions. Soil degradation or substantial alterations can arise 
from both natural and human-induced factors, underscoring the signif-
icance of proactive measures to preserve soils and biodiversity. Human- 
induced modifications to soil structure often stem from inadequate 
management of cultivation and irrigation practices, with soil saliniza-
tion being a notable consequence (Masoud et al., 2019; Stavi et al., 
2021). 

Soil salinity can be caused either by anthropogenic or natural factors. 
Although it might increase over time due to natural causes, man-made 
aspects such as agricultural activities accelerate its occurrence. It af-
fects especially semi-arid and arid regions of the world. Drought events, 

which climate change has made more frequent, have brought this 
problem to a global scale in the recent years (Stavi et al., 2021; Ge et al., 
2022). 

According to the Food and Agriculture Organization of the United 
Nations (FAO), 3 % of the world’s soils are affected by salinity in the 
upper and 6 % in the lower layers (FAO, 2023). Salinization of soils in 
agricultural areas causes excessive economic losses. As the severity of 
soil salinity increases, the yield of plants decreases, and plants lose their 
vitality after a certain level. Thus, it is a dynamic problem that depends 
on soil structure, hydrological and climatic conditions, and agricultural, 
social, and economic balances (Allbed and Kumar, 2013; Aksoy et al., 
2022). Monitoring and detecting soil salinity by applying only labora-
tory analyses and field surveys are not efficient enough for large-scale 
salt-affected lands. Nowadays, remote sensing (RS) techniques, ma-
chine learning (ML) approaches, and geographic information systems 
(GIS) are regarded as modern tools to analyse and model this phenom-
enon (Wang et al., 2019; Chen et al., 2021; Aksoy et al., 2022). RS and 
field-measured electrical conductivity (EC) data are integrated and used 
commonly to model and accurately map soil salinity (Gorji et al., 2020; 
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Stavi et al., 2021). RS systems can differentiate saline soils from 
non-saline soils as their spectral responses differ. However, slightly or 
moderately saline soil cannot be identified easily because other soil 
minerals and their components change the spectral behavior of the soil 
surface (Allbed and Kumar, 2013). Soil salinity severities are classified 
into five classes, from non-saline to extremely saline, based on deci 
Siemens per meter (dS/m) at 25 ◦C and represented by EC values. 

Recent advancements in machine learning and artificial intelligence 
have significantly contributed to the development of more resilient 
digital soil mapping techniques, offering dependable predictive methods 
for evaluating salinization (Sahbeni et al., 2023; Aksoy et al., 2022; Gu 
et al., 2022; Mohammadifar et al., 2022; Zarei et al., 2021; Wang et al., 
2019). Random Forest (Kabiraj et al., 2022), Support Vector Regression 
(Taghizadeh et al., 2021), and XGBoost (Zarei et al., 2021) are the most 
widely used machine learning methods for soil salinity mapping using 
remotely sensed data and field measurements. Some of deep learning 

models used for soil salinity mapping are deep convolutional neural 
networks (DCNNs) (Garajeh et al., 2021), densely connected deep neural 
networks (DenseDNNs), recurrent neural networks (RNNs) RNN with 
long short-term memory (RNN-LSTM) (Mohammadifar et al., 2021), U- 
Net (Akca and Gungor, 2022), U2-Net (Gu et al., 2022), and Deep 
Boltzmann machine (DBM) (Mohammadifar et al., 2022). Mohamma-
difar et al. (2021) compared DL models performance to ML model, and 
find out that DL models outperformed shallow learning models for soil 
salinity modeling. The study utilized a dataset consisting of 319 soil 
samples with electrical conductivity (EC) values ranging from 1.2 to 
13.11 deciSiemens per meter (ds/m), with a mean EC value of 6.1 ds/m. 
Importantly, the dataset did not include soil samples from the highly 
saline class. In their investigation, Akca and Gungor (2022) employed 
the U-Net and Support Vector Machine (SVM) algorithms for predicting 
soil salinity in the Harran Plain. The study utilized electrical conduc-
tivity (EC) values measured at 509 points and Rapideye satellite 

Fig. 1. Study areas: (a) location of Lake Urmia in Iran, (b) view of the lake and case study areas, (c) West LUP, (d) Southeast LUP.  
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imagery. Their analysis revealed the superior performance of the U-Net 
algorithm in soil salinity prediction compared to SVM. It is noteworthy 
that the XGBoost algorithm was not included in the ML models used in 
these studies. The utilization of DL-based methods is hindered by their 
data-hungry training process (Marcus, 2018). Consequently, this study 
exclusively employs ML-based methods due to the limited nature of the 
ground-truth data (less than 100 for each site). Refining ML-based 
methods using XAI is a new approach in the literature. This study 
aims to use RS data and in-situ soil measurements to determine the 
spatial distribution of soil salinity with different ML-based regression 
methods. The objectives are to: 

• Investigate the capacity of Landsat-8 OLI satellite imagery in deter-
mining soil salinity for two highly saline study areas in Iran;  

• Evaluate the efficiency and utility of RF and XGBoost ML models for 
modeling soil salinity;  

• Examine the effect of different features on the prediction accuracy of 
ML models;  

• Understand and explain the results of implemented ML models using 
explainable artificial intelligence methods in detail. 

To fulfill our objectives, we collected 26 features comprising 
different spectral bands of a Landsat-8 OLI image and different indices 
created from these bands. We trained two widely-used ML-based 
regression models using these features and in-situ salinity measure-
ments. In this study, the selection of the Random Forest (RF) algorithm 
was based on its well-documented success in soil salinity modeling, as 
evidenced by Sahbeni et al. (2023). Furthermore, the decision to include 
the XGBoost algorithm for comparison was influenced by its increasing 
popularity and its regularization capability to prevent overfitting 
through regularization (Ma et al., 2023; Zarei et al., 2021. We also 
employed different data over-sampling methods to minimize the 

Fig. 2. Spatial distribution of soil samples (a) West LUP, (b) Southeast LUP.  
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Table 1 
EC ranges and sample counts in each salinity class.  

Study area Total collected 
samples 

Number of modeling 
samples 

Number of validation 
samples 

EC 
ranges 

0–2 dS/ 
m 

2–4 dS/ 
m 

4–8 dS/ 
m 

8–16 dS/ 
m 

Above 16dS/ 
m 

West LUP 71 39 10 0–102 12 6 14 6 33 
Southeast 

LUP 
74 49 19 0–107 38 9 8 5 14  

Fig. 3. Flow diagram of the methodology used.  

S. Aksoy et al.                                                                                                                                                                                                                                   



International Journal of Applied Earth Observation and Geoinformation 130 (2024) 103879

5

problems arising from the limited number of reference data. Finally, we 
explained the trained ML models in terms of the contributions of the 
features by applying explainable ML methods. This paper seeks to close a 
gap in the literature on RS-based soil salinity through investigating the 
over-sampling methods with the intention of increasing the limited 
ground measurements and integrating XML to better explain the ML- 
based models used in soil salinity mapping. In addition, a comprehen-
sive analysis of two different case study regions provides insights into 
other locations suffering from soil salinity. 

2. Study regions and datasets 

2.1. Study regions 

We examined two areas around Lake Urmia in Iran, West Urmia 
Playa and Bonab Region, shown in Fig. 1(a) and (b). Lake Urmia is a 
large saline lake with an area of 6000 km2. This lake has been declared 
as a natural park since 1976 and is on the UNESCO protection list. It has 
a basin of 51876 km2 and 6.5 million people benefit from this basin 
through agricultural and industrial activities. Although agricultural 
areas cover 10 % of the area, they consume 90 % of the renewable water 
resources for irrigation (Haghighi et al., 2018). Due to reasons such as 
excessive water consumption and insufficient rainfall, the water surface 
area has shrunk over time. An increase in water consumption caused 

excessive use of groundwater, and consequently, salty groundwater 
reduced agricultural productivity over time. Agricultural lands with 
reduced productivity started to be abandoned (Hamzehpour et al., 2018; 
Aksoy et al., 2022). 

2.1.1. Western Lake Urmia Playa 
The first case study area is in the western part of Lake Urmia Playa 

(LUP) (Fig. 1(b) and (c)). It is approximately 82 km2 with an elevation 
varying between 1270 and 1278 m. 71 soil samples are collected from 
different playa surfaces identified previously (Hamzehpour et al., 2022) 
and EC is determined in the laboratory in 1:2.5 soil-to-water extracts 
using a Jenwey conductivity meter (model 45 10). The samples are 
collected from the top 20 cm of the soil during October 2–12, 2018 
(Fig. 2) representing the end of the dry season when salt accumulation is 
the highest. 

2.1.2. Southeast Lake Urmia Playa 
The second case study area is in the southeastern part of the LUP in 

the Bonab region (Fig. 1(a), (b), and (d)). The altitude of the region 
varies between 1270 m and 1285 m. 74 soil samples are collected from 
different playa surfaces identified previously in the region (Motaghi 
et al., 2020) from 0 to 20 cm depth during Autumn 2014, and soil EC is 
determined using the method explained in Section 2.1.1. 

Fig. 4. Environmental covariates used in this study.  
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2.2. Satellite images 

Landsat-8 OLI satellite image dated September 15, 2014 is used for 
the Southeast LUP, while the satellite image dated October 3, 2018 is 
chosen for the West LUP. Landsat-8 satellite completes its orbit at an 
altitude of 705 km in 99 min. Its temporal resolution is 16 days. We used 
Landsat-8 collection 2 level 1 imagery and geometrically and radio-
metrically corrected these images. Satellite-level reflectance values were 
used (USGS, 2022). 

2.3. EC measurements 

Soil samples are collected and EC is measured in the laboratory 
considering the fact that these measurements are known to give more 
accurate results. In Fig. 2, the soil sample distributions are shown for the 
West and Southeast LUP. EC values increase towards the lake, while it 
has comparatively lower values towards the agricultural lands in the 
study areas. Unlike the West LUP, samples are collected regularly in a 

Fig. 5. Western LUP salinity maps (a) RFR and no over-sampling, (b) RFR and ROS, (c) RFR and SMOTE, (d) XGBoost and no over-sampling, (e) XGBoost and ROS, (f) 
XGBoost and SMOTE. 

Table 2 
Accuracy results of ML models for the West LUP.  

ML Method Over-sampling Method R2 RMSE 

RFR None  0.61  20.17 
RFR ROS  0.68  18.90 
RFR SMOTE  0.61  20.33 
XGR None  0.67  18.64 
XGR ROS  0.76  16.60 
XGR SMOTE  0.71  17.93  

Table 3 
Examination of salinity levels of the West LUP test samples.  

Sample GT RFR 
None 

RFR 
ROS 

RFR 
SMOTE 

XGR 
None 

XGR 
ROS 

XGR 
SMOTE 

1 0–2 4–8 4–8 2–4 4–8 4–8 2–4 
2 0–2 2–4 0–2 2–4 0–2 0–2 0–2 
3 2–4 8–16 8–16 8–16 4–8 8–16 4–8 
4 2–4 2–4 2–4 2–4 2–4 2–4 0–2 
5 4–8 8–16 8–16 8–16 4–8 8–16 8–16 
6 4–8 4–8 4–8 4–8 2–4 0–2 2–4 
7 8–16 8–16 8–16 8–16 8–16 8–16 4–8 
8 8–16 8–16 8–16 8–16 8–16 8–16 8–16 
9 >16 >16 >16 >16 >16 >16 >16 
10 >16 >16 >16 >16 >16 >16 >16  
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grid network in the Southeast LUP. However, the study area is kept 
wider to map salt structures. Table 1 summarizes the EC ranges and the 
sample counts in each salinity class obtained from the two case study 
areas. 

3. Methodology 

Initially, Landsat-8 satellite images are obtained in accordance with 
the collection date of the soil samples for both study areas. Features are 
then generated to create a model between satellite images and soil 
samples. The generated features are used as input for ML algorithms, 

while the EC data is used as the output of the model. In addition to 
producing maps with the trained models, these models are explained 
with explainable artificial intelligence (XAI) methods. Fig. 3 illustrates 
the methodology followed in the study. 

Fig. 6. The Southeast LUP Region salinity maps (a) RFR and no over-sampling, (b) RFR and ROS, (c) RFR and SMOTE, (d) XGBoost and no over-sampling, (e) 
XGBoost and ROS, (f) XGBoost and SMOTE. 

Table 4 
Accuracy results of machine learning models for the Southeast LUP Region.  

Machine Learning Method Over-sampling Method R2 RMSE 

RFR None  0.75  16.47 
RFR ROS  0.73  16.25 
RFR SMOTE  0.78  15.34 
XGR None  0.78  13.62 
XGR ROS  0.77  13.43 
XGR SMOTE  0.83  12.24  

Table 5 
Examination of salinity severity levels of the Southeast LUP test samples.  

Sample GT RFR 
None 

RFR 
ROS 

RFR 
SMOTE 

XGR 
None 

XGR 
ROS 

XGR 
SMOTE 

1 0–2 0–2 2–4 2–4 0–2 0–2 0–2 
2 0–2 0–2 0–2 2–4 0–2 0–2 2–4 
3 0–2 4–8 8–16 4–8 0–2 0–2 0–2 
4 2–4 2–4 2–4 2–4 2–4 2–4 2–4 
5 2–4 2–4 2–4 4–8 2–4 2–4 2–4 
6 2–4 2–4 2–4 2–4 2–4 2–4 2–4 
7 4–8 4–8 4–8 4–8 4–8 4–8 4–8 
8 4–8 >16 >16 >16 >16 >16 >16 
9 8–16 >16 >16 >16 >16 >16 >16 
10 8–16 8–16 8–16 8–16 8–16 8–16 8–16 
11 >16 >16 >16 >16 >16 >16 >16 
12 >16 >16 >16 >16 >16 >16 >16 
13 >16 >16 >16 >16 >16 >16 >16  
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3.1. Google Earth Engine (GEE) platform 

The GEE platform enables users to rapidly perform spatial analyses 
and visualize them with petabytes of analysis-ready spatial data. GEE 
allows users to achieve high-performance analyses without the need for 
any computing power since it is a cloud-based system. High- 
performance computational tools are easily available, even without 
high-level programming knowledge. In addition to GEE data, many 
spatial algorithms are offered within the framework of this platform. 
The platform also allows multiple people to work on the same analysis 
(Gorelick et al., 2017). In this study, GEE is used to produce environ-
mental covariates calculated from different spectral bands of satellite 
data using ‘ee.Image.expression’, ‘ee.Image.sampleRegions’, and ‘ee. 
Image.sampleRectangle’ functions, and for the visualization of the maps 
using the ‘ee.Image.getThumbURL’ function. 

3.2. Environmental covariates 

Several environmental covariates are used for the estimation of soil 
salinity. The mechanistic model for soil development is the basement of 
feature determination. It is known as the SCORPAN formula (McBratney 
et al., 2003). The features shown in Fig. 4 are produced to determine 

soil, plant, and spatial characteristics in the study. Detail explanations 
and related references for these features could be found in (Aksoy et al., 
2022) Since the topography does not change considerably in both of the 
study areas, it is not included in the features produced within this for-
mula. Aksoy et al. (2022) has already assessed the performance of three 
ML algorithms using two different satellite platforms with the aim of 
suggesting the ideal set of remote sensing indices for modeling features. 
26 of these features are selected for LUP and its surroundings. Moreover, 
a procedure named variable reduction is implemented for selecting 
features. In the end, five different indices have been utilized in the 
previous study of Aksoy et al. (2022). 

3.3. Satellite image derived features 

Three bands (Brightness, Greenness, and Wetness) obtained from 
tasseled cap transformation, original spectral bands, different vegeta-
tion, and 7 salinity indices are preferred as features in this study. Some 
of these indices were selected from our previous studies as they pre-
sented promising results (Gorji et al., 2020; Aksoy et al., 2022). Selected 
original bands are near-infrared (NIR), red, green, blue, short wave near- 
infrared (SWIR) one, and SWIR two bands (Aksoy et al., 2022). In total, 
17 spectral indices, including 1 water index, 7 salinity indices, and 9 

Fig. 7. Absolute SHAP values of the models developed (a) for the West, (b) Southeast LUP.  
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vegetation indices are selected. The collected 26 features are normalized 
to be in a range of [0,1] and are smoothed using a 3 × 3 low-pass filter 
(Aksoy et al., 2022). 

3.4. Over-sampling techniques 

Class unbalance, which leads to the dominant behavior of the ma-
jority classes, is a typical problem in ML algorithms where data sets do 
not have an equal or sufficient amount of samples for each class. Sam-
pling methods can be used to correct this unstable data distribution. The 
goal of over-sampling techniques is to increase the data of the minority 
class and align it with the quantitative distribution of the majority class. 

Among these methods, Synthetic Minority Over-sampling Technique 
(SMOTE) and random over-sampling (ROS) are frequently used (Fon-
seca et al., 2021). 

In order to obtain the sample count in the majority class, ROS is 
undertaken by randomly copying the data from the minority class 
(Hounkpatin et al., 2018). It is preferred as it is an easy method; how-
ever, it has been found that this method causes over-fitting in ML al-
gorithms and puts forth worse results than algorithms trained without 
over-sampling (Fonseca et al., 2021). 

The SMOTE method was introduced to literature by Chawla et al. 
(2002). Instead of randomly replicating a minority of samples, this 
method creates unit vectors between neighboring samples determined 

Fig. 7. (continued). 
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by the nearest neighbor method. This vector is then rescaled by a 
random number from 0 to 1 to represent a new point in the feature 
space. This new point is synthetically generated. 

We have applied ROS and SMOTE over-sampling methods to the 
samples falling into five salinity classes by adding the aforementioned 
characteristics. We then trained the ML algorithms with the original 
reference data (without over-sampling) and with the new reference data 
generated from over-sampling methods. 

3.5. ML approaches 

Breiman (2001) introduced the Random Forest (RF) ML technique. 
The classification and regression tree algorithm is the foundation of this 
ensemble learning strategy. Decision trees that are by themselves a weak 
ML method are combined to form a powerful ensemble ML algorithm 
(Wang et al., 2019). RF algorithm provides solutions to both regression 
and classification problems (Li et al., 2019). RF implemented using 
Sklearn Python library, which was developed by (Pedregosa et al., 
2011). 

One of the quickest gradient-boosting tree algorithms is called 
eXtreme Gradient Boosting (XGBoost) introduced by Chen and Guestrin 
(2016) in Python. It achieves its computational efficiency by over-
coming an important shortcoming of gradient-boosted trees. When 
creating a new split for the tree, potential errors are estimated for all 

previous member splits. 
XGBoost addresses this shortcoming by examining the distribution of 

all data points in the leaf of the tree, narrowing the space in which it 
searches for feature separation. Although various regularization 
methods work within XGBoost, it is fast and convenient, and many 
hyperparameter possibilities can be found quickly. XGBoost also offers 
regularization to prevent overfitting (Zarei et al., 2021). The overall 
architecture of XGBoost is similar to the RF algorithm, but the trees are 
not as independent in parallel as in the RF algorithm. 

3.6. Explainable artificial intelligence (XAI) 

XAI methods are algorithms designed to explain the behavior of ML 
algorithms expressed as black boxes (Stadtler et al., 2022). Various XAI 
methods have been presented in the literature. Among them, 
perturbation-based methods such as Shapley Additive Explanations 
(SHAP) and Local Interpretable Model-agnostic Explanations (LIME), 
and gradient-based methods such as Learning Important FeaTures 
(DeepLIFT), SmoothGrad, and Gradient-weighted Class Activation 
Mapping (GradCAM) can be addressed (Krishna et al., 2022). These 
methods can be utilized to explain ML, however, picking a method and 
relying on its results is tricky. The problem with explanations is the 
importance of the features changing from one XAI method to another. 
This problem is known as Rashomon Effect in literature (Baniecki et al., 

Fig. 8. SHAP summary graphs for (a) West and (b) Southeast LUP.  
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2023). According to Breiman (2001), slight changes in data and models 
can affect explanations substantially. Ensemble models are especially 
prone to this effect since a slight disturbance in the model or data results 
in skipping from one model to another. Krishna et al. (2022) focused on 
the multiplicity problem of XAI and found that SHAP is the most 
preferred algorithm in the case of the Rashomon Effect. 

3.6.1. Shapley additive explanations (SHAP) 
SHAP was first introduced by Lundberg and Lee (2017). Its values 

can be derived for any model since they are independent of the model. 
Permutation sampling approximation is used under the assumption of 
feature independence. Values are essentially model feature contribu-
tions. The base value is the model’s expected result. The contribution of 
SHAP values to the model indicates how far the model moves away from 
this base value. Features that contribute more are considered as features 
that are important for the model. Both negative and positive contribu-
tions are possible. Absolute SHAP values represent the significance of 
the characteristics, whereas the average of the absolute SHAP values 
over all outcomes reflects the significance of the features as a whole 
(Stadtler et al., 2022). Analyses in this study with the SHAP method are 
presented in 4 graphs, namely summary, feature importance, de-
pendency, and force graphs. 

For each training sample, the SHAP summary graph illustrates the 
influence of the model input features on the model output. It is colored 
according to the values of the inputs and presents the values of the in-
puts that contribute to the model. The SHAP feature importance graph 
shows the joint absolute contribution as a bar graph instead of the 

contribution of each data shown in the summary graph. This graph 
highlights the total contribution to the model. The direction in which it 
contributes to the model is ignored. The dependency graph explains the 
relationship between two features in the model. It explains the contri-
bution of a feature to the model through both the value of that feature 
and the value of another feature that is dependent on that feature. A 
force plot is a graph showing each feature’s contribution to the model for 
a single sample. It expresses the base value estimated for the regression 
model and the contribution of the features of the selected sample to the 
model, together with the model output at the end of the summation. 

3.7. Accuracy assessment 

Root mean square error (RMSE) and coefficient of determination (R2) 
metrics are used to calculate the accuracy of the test samples. RMSE and 
R2 are expressed in equations (1) and (2) (Wang et al., 2019). 

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
n

∑n

i=1
(Xi − Yi)

2

√

(1)  

R2 = 1 −
∑n

i=1(Xi − Yi)
2

∑n
i=1(Xi − X )

2 (2)  

where n stands for the sample count, Xi for the observed soil salinity, Yi 
for the estimated soil salinity, and X for the average measured salinity 
value. 

Fig. 8. (continued). 
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4. Results 

We have generated soil salinity maps for 6 scenarios. These scenario 
combinations are produced by combining 2 ML algorithms with 3 
different sampling cases. While we have used RF and XGBoost as ML 
algorithms; we have generated 3 different sampling cases, one with 
original data and new data formed by over-sampling with ROS and 
SMOTE methods. In summary, the following model and data combina-
tions are created and tested:  

• Test 1: RF model and original data,  
• Test 2: RF model and data generated by ROS,  
• Test 3: RF model and data generated with SMOTE,  
• Test 4: XGBoost model and original data,  
• Test 5: XGBoost model and data generated by ROS,  
• Test 6: XGBoost model and data generated with SMOTE. 

We have conducted our initial assessments on the visual interpreta-
tion of the soil salinity maps by domain experts. We have also evaluated 
the training and test performance of models. Afterwards, summary, 
importance, dependency, and force plots have been produced using the 
SHAP method to validate and explain the models produced as a result of 
the determined tests. 

4.1. West LUP model accuracies and salinity maps 

Soil salinity maps for the West LUP are shown in Fig. 5. Both ML 
models are able to identify areas close to the lake as extremely saline. 
However, the RF algorithm identified some specific regions far from the 
lake as highly saline, as can be observed in Fig. 5 (a), (b), and (c). These 
regions are either villages and factories or uncultivated lands. Although 
these areas are slightly or non-saline, they are incorrectly predicted by 
the regression analysis as they are not cultivated. When Fig. 5 (d), (e), 
and (f) are examined, it is clear that XGBoost model has produced more 
consistent maps. However, the red pixels within agricultural lands are 
uncultivated lands with around 4–8 dS/m. The soil salinity map 
generated from XGBoost-SMOTE (Fig. 5(f)) better represents the salinity 
conditions compared to the XGBoost-no oversampling experiment Fig. 5 
(d). Considering the outcomes of the previous studies in this field con-
ducted by Aksoy et al. (2022), the XGBoost algorithm achieved more 
accurate results. This visually determined accuracy is also reflected in 
the statistical analysis. As shown in Table 2, R2 values are higher for the 
XGBoost compared to the RF algorithm, while RMSE values are 
comparatively lower. The XGBoost-ROS experiment yielded the lowest 
RMSE and the highest R2 values. Upon comparing the RMSE values, it 
was observed that the RFR none and RFR SMOTE methods demonstrated 
similar performance. Conversely, the disparity in RMSE between RFR- 
ROS and XGR-ROS was 2.3, favoring the XGBoost approach. The 
salinity levels of 10 test samples after regression are shown in Table 3. It 

Fig. 9. Dependency plots of Blue and EVI feature in the (a) West, and (b) Southeast LUP. (For interpretation of the references to color in this figure legend, the reader 
is referred to the web version of this article.) 
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is seen that the XGBoost algorithm gives a more accurate result with 
samples falling in the same or close to the same class. 

4.2. Southeast LUP model accuracies and salinity maps 

The salinity maps produced for the Southeast LUP are illustrated in 
Fig. 6. The RF algorithm effectively delineates the saline lands proxi-
mate to the lake as highly saline, whereas XGBoost classifies this region 
as ranging from non-saline to moderately saline. However, it is antici-
pated that this area will exhibit highly saline characteristics. Conversely, 
the XGBoost-ROS method categorizes this region as non-saline. Given 
that soil salinity is typically low in agricultural areas, it is noteworthy 
that all models have identified these areas as slightly saline or non- 
saline, representing a significant finding. When the accuracy results 
for the Southeast LUP shown in Table 4 were analyzed, the XGBoost 
model provided better results than the RF model, and the best R2 and 
minimum RMSE values were obtained with the XGR-SMOTE approach. 
However, the difference in RMSE between RFR ROS and RFR SMOTE is 
1.19. Visual analysis in areas other than salt structures is consistent with 
these findings. When the test samples shown in Table 5 are evaluated, it 
is concluded that the XGBoost algorithm performed better on non-saline 
samples. 

4.3. Explainable ML results 

We have performed a SHAP analysis of the ML models in 4 stages: 
Initially, each feature’s absolute contribution to the model outcome is 

examined. Secondly, the direction in which the features contribute to 
the model and how their values contribute to the model are investigated. 
Thirdly, the dependency between the two most contributing features is 
examined in the model. Finally, the contributions of the features to the 
models are scrutinized on a sample-by-sample based on the test samples 
selected from both domains demonstrated in Table 4 and Table 5. 

Absolute SHAP values for the West and Southeast LUP are shown in 
Fig. 6. It can be seen that plant status-related indices like ENDVI, NDVI, 
and EVI highly contribute to the model output, as seen in Fig. 7(a). 
Similar to the previous study of Aksoy et al. (2022), it is clear that the 
CRSI index also highly contributes to the model in this area. Fig. 7(b) 
shows that the blue and green bands are the features that contribute 
most to the model. Vegetation indices also contributed to the model, 
although not as much as the West LUP. 

The input of SHAP values and features to the model can be seen as 
positive and negative. Their effect on the model according to the fea-
tures of the West and Southeast LUP is shown in Fig. 8. When the fea-
tures of the model are analyzed in Fig. 8(a), it can be stated that high 
values of indices such as ENDVI and NDVI contribute to low a expec-
tancy of salinity, while low values contribute to high levels of salinity. 
NDWI index provided the opposite contribution. The conclusion to be 
drawn from these findings is that with increasing soil salinity, vegetation 
cover decreases. In Fig. 8(b), low values of the bands, such as those in 
blue and green, contribute to the soil’s low salinity severity, whereas 
high values contribute to the soil’s high salinity level. Based on these 
findings, it can be concluded that saline areas are brighter areas in the 
visible region. Therefore, salt crusts can easily be distinguished on 

Fig. 9. (continued). 
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satellite images by being white and bright. 
The two most contributing features among the 6 tests are compared 

in terms of dependency. NDVI and ENDVI features are analyzed in the 
dependency graph created for the West LUP, as shown in Fig. 9(a). When 
the graph is analyzed, it is seen that low values of both NDVI and ENDVI 

features positively contribute to the model. This result is independent of 
the model and over-sampling methods. The reason is that NDVI and 
ENDVI features are mostly produced by combining the same features. In 
Fig. 9(b), unlike the West LUP, blue and EVI features contributed the 
most to this region. Thus, the dependency between these two features is 

Fig. 10. West LUP 1st test sample force plot.  

Fig. 11. West LUP 3rd test sample force plot.  
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Fig. 12. West LUP 10th test sample force plot.  

Fig. 13. Southeast LUP Region 1st test sample force plot.  
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analyzed. It is observed that the low values of the blue band contribute 
negatively to the model, while the low values of EVI contribute posi-
tively. An inverse correlation between these two features is common to 
all models and over-sampling tests. The blue feature of the model shifts 
towards positive, especially for values higher than 0.55. 

In order to explain the models on the basis of test samples, SHAP 

force plots for the West LUP are analyzed in Figs. 10–12. The charac-
teristic results mirror the findings of the overall analysis. The graphs 
basically describe EC values that each feature adds or subtracts from a 
base value, which is the value predicted by the model without using any 
features. When the 10 samples tested for the West LUP are analyzed, it is 
found that indices such as ENDVI and NDVI had a decreasing effect on 

Fig. 14. Southeast LUP Region 8th test sample force plot.  

Fig. 15. Southeast LUP Region 12th test sample force plot.  
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the regression result, except for extremely saline samples. 
When the test sample shown in Fig. 10 is examined, it is understood 

that the model obtained with the XGBoost algorithm and SMOTE over- 
sampling method finds the closest value to the real situation. The model 
predicted the value of 0.57 dS/m as 2.64 dS/m. The NDVI value of 0.53 
and the ENDVI value of 3.04 provided the most negative contribution to 
the model result, while CRSI offered a positive contribution with a value 
of − 0.13. 

The 3rd test sample force plot is shown in Fig. 11. When this force 
plot is investigated, none of the models are able to predict the correct 
salinity level. The closest models are the XGBoost and SMOTE over- 
sampling method. While NDVI and EVI2 features performed the most 
negative contribution, SI6, which is one of the salinity indices, made the 
most positive contribution to the model. 

The force plots for the 10th test sample, which is the last trial for the 
West LUP, are shown in Fig. 12. Although all models give different re-
sults from the actual EC values, the closest result is given by the XGBoost 
algorithm with the ROS over-sampling method, with a value of 37.56 
dS/m. However, all models still predicted values within the correct 
salinity level. ENDVI and green features made the most positive 
contribution, while NDVI made a negative contribution in this test. 

The graphs produced for the 13 test samples selected for the South-
east LUP Region are shown in Figs. 13–15. The blue band contributes 
negatively to the regression of soil salinity, while the green band con-
tributes in direct proportion to the salinity level. Salinity indices 
contribute positively, especially as salinity increases. The brightness 
value contributes positively to the regression result at most salinity 
levels. 

Fig. 13 shows the force plots for the 1st test sample in the Southeast 
LUP Region. The model that exerted the closest prediction is the 
XGBoost and ROS over-sampling method, with a value of 1.81 dS/m. 
Green and SWIR1 features positively contribute to the model, while blue 
and EVI2 features are the most negative contributors. 

When the force plots of the 8th test sample shown in Fig. 14 are 
analyzed, it is seen that none of the models made a prediction close to 
reality. The closest estimate is obtained by the XGBoost algorithm with a 
value of 24.16 dS/m with the SMOTE over-sampling method. The EVI 
feature contributes negatively, whereas both blue and green features 
positively contribute to the model result. 

The force graphs shown in Fig. 15 belong to the 12th test. When these 
graphs are analyzed, it is noticeable that the XGBoost algorithm predicts 
notably closer results. The XGBoost model, with a value of 31.27 dS/m, 
is the model that offered the most accurate prediction. The blue and 
green features have the most positive contribution, while the EVI2 
feature has the most negative contribution to the model result. 

A comparison of methods developed for soil salinity prediction in-
dicates that ML methods exert better results than simpler methods such 
as linear regression. Despite the limited availability of local samples, ML 
algorithms can still perform good predictions. In particular, the XGboost 
algorithm achieved higher accuracy results than the RF algorithm. It 
only had difficulty detecting the salt crust in the Southeast LUP Region, 
which represents extremely saline soil. The SMOTE over-sampling 
method also contributes the most to the accuracy of the ML models. 

5. Discussion 

Similar studies investigated ML performance on this phenomenon. 
They also found that ML models are capable of predicting soil salinity 
with high accuracy, as further discussed below. 

Considering the former study of Aksoy et al. (2022) for the same 
region, lower accuracy is obtained for the West LUP. The reason for this 
may be attributed to varying local samples, satellite imagery with 
different dates, and accuracy analysis with cross-validation. 

Zarei et al. (2021) compared the XGBoost method with RF in the 
study of soil salinity with ML methods. They conducted the study in the 
Eshtehard City of Iran. Similar to the results of this study, XGBoost 

predicted the best result with an R2 value of 0.76 in determining soil 
salinity, where the model was trained using 46 features. 

Zhou et al. (2022) compared RF and XGBoost ML algorithms in their 
global salinity studies. Similar to this study, they found out that the 
XGBoost algorithm gave the best result. This method reached the best 
result with R2 of 0.71, followed by the RF algorithm with R2 of 0.69. 

Another study comparing XGBoost, RF, and decision trees in 
modeling soil salinity was conducted by Ma et al. (2021). The study 
worked with soil samples collected in 2018 in the Tarim Basin of China. 
The XGBoost method gave a better result than RF with a difference of 5 
%. 

Similar studies by Ma et al. (2021) and Zhou et al. (2022) searched 
the feature importance ratings produced by the XGBoost algorithm to 
analyze the contribution of features to the models. Feature importance 
graphs were similar to SHAP feature importance graphs. However, 
SHAP was able to explain not only the importance of features, but also 
the direction in which they contributed to the model, both for the overall 
model and on a sample basis. The dependencies between features were 
expressed as correlations in these recent studies. SHAP also provides the 
opportunity to examine the dependencies of features according to their 
contribution to the model. 

The soil salinity mapping results may exhibit substantial variation 
across diverse environmental contexts. Given that numerous other 
physical attributes, including color, texture, and moisture, can influence 
the surface reflectance of saline soils, the exclusive reliance on a singular 
feature may not consistently yield precise estimates in all cases (Dalia-
kopoulos et al., 2016). 

6. Conclusions and recommendations 

Soil salinity should be recognized as a significant problem by 
decision-makers and prevention measures should be taken before it 
causes more critical issues, such as food crises. As used in the identifi-
cation of many environmental problems, RS and ML methods play 
important roles in the determination and monitoring of soil salinity. 
Therefore, in the scope of the United Nations Sustainable Development 
Goals, we suggest periodic monitoring of soil salinity using RS-based 
systems and ML methods to provide reliable information to take 
necessary interventions within the nexus of food security-water use- 
sustainability (UN, 2022). 

It has always been a matter of debate whether ML algorithms are a 
closed box and whether the decisions they make are based on the right 
reasons. XAI methods have brought a solution to this problem. Since 
SHAP values have been frequently used in literature, their use is also 
preferred in this study. SHAP values have revealed how soil salinity is 
affected and by which characteristics within the scope of the study. The 
identification of important features can exhibit significant variability 
across different model configurations, as indicated by SHAP explana-
tions. This underscores the necessity for further research on the inter-
pretability of machine learning models in the context of soil salinity 
mapping. 

Lake Urmia Basin is economically and ecologically important in the 
northwest of Iran. However, due to human impact and excessive use of 
groundwater, the problem of soil salinization in agricultural lands has 
been emerging over time. This problem adversely affects agricultural 
activities. Soil salinity, which has highly increased in recent years, has 
become critical to the point of abandonment of agricultural lands. 
Therefore, it is a significant problem to detect, monitor, and intervene in 
soil salinity in this region. 

The findings of this study demonstrate that while the XGBoost ML 
algorithm produces superior outcomes, it has difficulty in capturing the 
extremely saline salt crusts in the Southeast LUP Region. Data diversi-
fication methods improve model accuracy. In terms of SHAP values, 
although different for the two study areas, visible and near-infrared 
bands, as well as the vegetation indices derived from them, are found 
to make high contributions to the models. In conclusion, visible bands 
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are related to soil salinity in a way that a brighter surface has a 
comparatively high level of salinity. Especially surfaces like salt crust are 
considered highly bright with high salinity values. In addition to the 
brightness effect, vegetation is also heavily influenced by soil salinity. As 
such, a lack of vegetation and resulting changes in vegetation indices 
have a remarkable effect. Physical properties of saline soil, such as 
brightness and effects on vegetation, are also shown as important fea-
tures for soil salinity modeling by SHAP explanations. 

The limitation of taking this study further is the limited availability 
of ground measurements. ML methods are ultimately trained with the 
available data. It is obvious that when models are trained and tested 
with more data, they will produce more reliable results. The quality of 
the data collection for soil salinity can also be increased by choosing 
possible areas via satellite before collecting field samples. 
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