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A B S T R A C T

Since the early days of quantum mechanics, hydrogen, as the simplest of all atoms, has been studied or used
to investigate new physics. In the past this knowledge has been applied to develop a polarimeter where the
initial nuclear polarization of a proton beam could be determined. The key component of this Lamb-shift
polarimeter is the so called spin filter, which is able to separate one of four metastable hydrogen hyperfine
states by quenching the remaining three hyperfine states to the ground state. Unfortunately, the conventional
spin filter is only able to filter two out of the four hyperfine states individually. Therefore, this work provides
the necessary theory as well as experimental conditions to build a new generation of spin filter which permits
the separation and transmission of any metastable hydrogen hyperfine state as well as for its isotopes in a
corresponding beam. This knowledge is applicable for other experiments in different fields of research, e.g.
the bound beta decay, axion research or parity violation experiments.

1. Introduction

Hydrogen is the element with the simplest structure, since the nucleus comprises a single proton orbited by one electron. It is the only atom
for which the Schrödinger equation can be solved analytically. The hydrogen atom and its energy corrections are described by a well-established
theory, which makes it suitable for experiments addressing the effects of polarization. In this context the term polarization is defined as the average
spin orientation for an ensemble of particles. This orientation refers to the alignment of the spin magnetic moment to an external magnetic field.
To measure the polarization of a hydrogen beam in the metastable 2𝑆1∕2 state, a Lamb-shift polarimeter (LSP) [1,2] is a useful instrument and has
been successfully used for many years at the polarized internal target of the ANKE experiment [3].

One important part of the underlying detection method is the so called spin filter [4]. Its purpose is to distinguish metastable atoms with
different spin configurations from each other. For the hydrogen atom four spin combinations are possible, defined by the hyperfine structure.
Whereas the already existing LSP is only able to filter the two 𝛼 states with electron spin up

(

𝑚𝑠 = 1∕2
)

, the theory presented in this paper triggered
the development of a second-generation spin filter to overcome this limitation and to filter all four states separately. The two unreachable states for
the current set-up are called 𝛽 states and are characterized by having the electron spin down

(

𝑚𝑠 = −1∕2
)

. Several experiments may take advantage
of this upgraded Lamb-shift polarimeter, as their analysis depends on one or both of the 𝛽 states. One application is the BoB experiment, which
aims at analyzing the bound beta decay [5]. The focus in this experiment is to determine the helicity of the anti-electron neutrino by measuring
the occupation number of hydrogen atoms in the forbidden 𝛽3 state

(

|𝐹 = 1, 𝑚𝐹 = −1⟩) after the rare neutron decay 𝑛→ 𝐻2𝑆 + �̄�𝑒.
Moreover, the evidence for parity violation in the case of the metastable hydrogen atom comes within reach as the detection of the 𝛽 states is

key [6]. Without any external electric fields, transitions from the 𝛽 states into the 2𝑃1∕2 set are only possible due to the weak interaction, which
violates the parity conservation. This would lead to a measurement of the Weinberg angles at very low energies.

Another experiment to make use of a beam of hydrogen atoms in the 𝛽4 substate can be the search for axions [7]. While the classical spin filter
can be used for the search of anthropic QCD dark matter axions at 10−7 eV that can induce a 𝛼2 → 𝛼1 transition, this new spin filter might allow
to observe transitions from the 𝛽4 into 𝛼1 due to dark matter axions at energy levels of about 10−6 eV.
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Fig. 1. This plot shows the binding energies of the hyperfine substates (Breit-Rabi diagram) as function of an external homogeneous magnetic field for the metastable hydrogen
2𝑆1∕2 and the 2𝑃1∕2 set, respectively. The zero point on the 𝑦 axis is defined by the energy difference of both sets to each other. Including the fine splitting their binding energies
should be equal, but the Lamb-shift [8], as a product of QED corrections, separates these energy levels.

Table 1
The table defines the Breit-Rabi states at 𝑛 = 2 for hydrogen in the case of a vanishing external magnetic
field 𝐵0 = 0. In this case, they correspond to the hyperfine states expressed by the coupled representation
|𝐹 , 𝑚𝐹 ⟩.

𝐹 𝑚𝐹 𝐽 𝐿

𝛼1 1 1 1∕2 0
𝛼2 1 0 1∕2 0
𝛽3 1 −1 1∕2 0
𝛽4 0 0 1∕2 0
𝑒1 1 1 1∕2 1
𝑒2 1 0 1∕2 1
𝑓3 1 −1 1∕2 1
𝑓4 0 0 1∕2 1
𝑔1 2 2 3∕2 1
𝑔2 2 1 3∕2 1
𝑔3 2 0 3∕2 1
𝑔4 1 1 3∕2 1
ℎ5 2 −1 3∕2 1
ℎ6 2 −2 3∕2 1
ℎ7 1 0 3∕2 1
ℎ8 1 −1 3∕2 1

2. First-generation spin filter

The already existing type of spin filter utilizes a static, homogeneous magnetic field along the beam direction. In addition, it features a cavity
nside the magnetic field coils that provides a static electric field perpendicular to the beam axis as well as a resonant radio frequency at 𝑓 = 1.60975
Hz in the mode TM0,1,0 [4,9,10]. All these components are visualized in Fig. 4. The main coils produce the homogeneous magnetic field 𝐵0, which

s necessary to achieve the energy splitting shown in Fig. 1 for the metastable hydrogen atoms. In between the cavity is located, which is divided
into four isolated quadrants to apply the static electric field as well as the radio frequency. The old spin filter then utilizes the energy crossing at
around 𝐵 ≈ 57 mT between the short lived 2𝑃1∕2 set and the metastable 2𝑆1∕2 set to induce electric dipole transitions via the static electric field
also known as the Stark effect [11]. Definitions of the Breit-Rabi eigenstates are obtainable in Appendix A as well as in Table 1. This reduces the
ccupation numbers of the 𝛽 states, which are transferred to the 𝑒 states of the 2𝑃1∕2 set. From there on the radio frequency can couple the 𝑒 states
o the remaining 𝛼 states. Only the corresponding 𝛼 state above the crossing point then survives the time of flight. Thus, it is possible to control the
ifetime of the single substates, i.e. to quench all into the ground state or to keep the occupation number of a single 𝛼 state at dedicated magnetic

fields around the crossing points (see Fig. 7).
Experimentally metastable hydrogen atoms are produced from a proton beam by charge exchange with cesium vapor, and their occupation

umbers are then verified in the quenching chamber where the metastable hydrogen atoms are quenched into the ground state while the produced
𝑦 − 𝛼 photons are detected by a photomultiplier [1,2]. Two of these measurements for a given spin filter situated at Forschungszentrum Jülich

have been conducted and the results are given in Figs. 2 and 3. In ideal measurements the peaks of an unpolarized beam should be of the same
heights and the background a flat line. Therefore, this gives another motivation for improved simulations to compare these with measurements to
identify the key parameters. Experiments showed that inhomogeneous magnetic fields produce unequal peak heights and reduce intensities while
less radio frequency power leads to a more curved background. In addition, the strength of the static electric field influences the peak width,
i.e. larger amplitudes corresponds to broader peaks.
2 
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Fig. 2. The signal of a photomultiplier as function of the current inside the spin filter for an initial unpolarized hydrogen beam with a beam energy of 𝐸𝑏𝑒𝑎𝑚 = 1.5 keV.

Fig. 3. The signal of a photomultiplier as function of the current inside the spin filter for an initial polarized hydrogen beam in the state 𝛼1 with a beam energy of 𝐸𝑏𝑒𝑎𝑚 = 1.5
eV. From this spectrum the nuclear polarization of the incoming proton beam was determined as 𝑃 ≈ 0.72.

2.1. The framework

The hydrogen atom, including the fine structure as well as the hyperfine interaction, is well described by the total angular momentum
𝐹 = 1 ⊗ 𝐽 + 𝐼 ⊗ 1, with 𝐼 being the nuclear spin and 𝐽 the total angular momentum of the electron. In the presence of an external magnetic
field �⃗� = 𝐵0𝑒𝑧 the eigenstates |𝑚𝐹 , 𝐹 ⟩ evolve to the Breit-Rabi states [12]. These satisfy the eigenproblem of the following Hamiltonian describing
yperfine structure splitting and the external interaction of a magnetic field

𝐻 = 𝐴𝐼 ⋅ 𝐽
ℏ2

+
(

𝑔𝐽𝜇𝐵
𝐽
ℏ
− 𝑔𝐼𝜇𝑘

𝐼
ℏ

)

⋅ �⃗� , (1)

with 𝜇𝐵 ,𝑘 being the Bohr and nuclear magneton, respectively. The Landé g-factor is represented by 𝑔𝐽 , and 𝑔𝐼 corresponds to the nuclear g-factor.
inally, 𝐴 represents the hyperfine splitting constant, which depends on the quantum numbers 𝑛, 𝐿 and 𝐽 [13]. The solution to the eigenproblem
n addition to the fine splitting (𝐹 𝑆) and the Lamb shift

(

𝛥𝐸𝐿𝑎𝑚𝑏
)

for the key states in this paper can be found in Appendix A and is illustrated in
Fig. 5 as well as in Fig. 1. An important point is that in Fig. 5 the magnetic field scale is so large, that only half of the eigenenergies can be resolved.

he other half of energy levels with different nuclear spin are all very close to one of the visible levels. In the next step, the first-order Stark effect
is applied to the Breit-Rabi eigenstates [11]. This eigenproblem needs to be addressed numerically for an electric field given by �⃗� = 𝜀0𝑒𝑥. For small
ields

(

𝜀0 ≤ 103 V
m

)

the perturbation onto the energy levels is nearly negligible. In contrast to this, the electric dipole interaction couples states
ith 𝛥𝐿 = ±1, i.e. the short-living 2𝑃 to the long-living 2𝑆 states, such that the evolution of the lifetime is of great importance. This lifetime can

be assumed as an additional damping term 𝑉𝐿𝑖𝑓 𝑒 = −𝑖 ℏ2𝜏 [4,13], which is one of the key principles used in the spin filter. Here, 𝜏 represents the
ifetime of its corresponding eigenstate.
3 
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Fig. 4. This two dimensional cross section shows the realization of the old type of spin filters. In the middle of the device sits the cavity. On the outside the magnetic field coils
are placed.

Fig. 5. Eigenenergies of the Hamiltonian from Eq. (1) as function of the magnetic field amplitude for a static constant magnetic field in beam direction.

3. The second-generation spin filter

The second-generation spin filter is based on the same concept as the old one, but the behavior of the 𝛼 and 𝛽 states is inverted, such that
the 𝛼 states perform transitions and the 𝛽 states are repopulated by a RF electromagnetic field with the right amount of energy equivalent to the
energy gap. To find energy crossings for the 𝛼 states, the 2𝑃3∕2 set needs to be taken into account. States ℎ7 and ℎ5 fulfill the necessary conditions,
and the corresponding crossings are situated at magnetic fields around 𝐵0 ≈ 429 mT and the necessary radio frequency to couple to the 𝛽 states
corresponds to 𝑓2 = 11.94059 GHz.

To integrate both concepts into a single device, it is essential to consider key characteristics of the existing spin filter, i.e. the energy crossings
between the 𝛽 and 𝑒 states at 54 mT and 60.5 mT. Therefore, the energy difference corresponds to a frequency of 𝑓1 = 1.60975 GHz [2]. Subsequently,
by utilizing Eq. (9) a radius of 𝑅1 = 71.3 mm corresponds to the frequency 𝑓1 for a cylindrically shaped cavity [9]. In comparison, the crossings
between the 𝛼1 and ℎ7, correspondingly 𝛼2 to ℎ5, are located at magnetic fields of 423 mT and 429 mT, respectively. This leads to a frequency of
𝑓 = 11.94059 GHz to fill the energy gap between the 𝛽 states and the crossing points. For the same radius, the 6th harmonic TM provides a
2 0,6,0
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frequency of 𝑓TM0,6,0
= 12.093 GHz requiring only minor tuning to align with the correct frequency. The corresponding radius to obtain the frequency

𝑓2 = 11.94059 GHz is given by 𝑅2 = 72.2 mm, resulting in a difference of only 𝛥𝑅 ≈ 0.9 mm. This means that with minor changes the new frequency
𝑓2 can be incorporated into the first-generation spin filter.

3.1. Theory

To understand the system dynamics it is necessary to solve the Schrödinger equation. The only time-dependent part of all potentials entering
the Hamiltonian is the RF electromagnetic field of the TM0,𝑛,0 mode. As an analytical solution for the Schrödinger equation is not obtainable, one
makes use of the time-dependent perturbation theory [13]. By means of the interaction picture it is possible to write the state |𝜓⟩ as a linear
combination of the eigenstates of the unperturbed system

|𝜓(𝑡)⟩ = 𝑒−
𝑖𝐻0 𝑡
ℏ

|𝜓(𝑡 = 𝑡0)⟩ =
∑

𝑛
⟨𝑛|𝑈 (𝑡)|𝜓(𝑡 = 𝑡0)⟩
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

=𝑐𝑛(𝑡)

|𝑛⟩, (2)

with 𝑈 (𝑡) = 𝑒−
𝑖𝐻0 𝑡
ℏ being the time evolution operator in the interaction picture [13,14]. Correspondingly, it is possible with this state to transform

he Schrödinger equation into a set of coupled differential equations for the amplitudes 𝑐𝑛(𝑡)

𝑖ℏ ̇𝑐𝑘(𝑡) =
∑

𝑛
𝑒−

𝑖𝛥𝐸 𝑡
ℏ 𝑐𝑛(𝑡)⟨𝑘|𝑉 (𝑡)|𝑛⟩, (3)

with 𝛥𝐸 = 𝐸𝑛 −𝐸𝑘. In the next steps a short introduction into the time unperturbed system as well as into the perturbating potentials is given. As
mentioned above the spin filter contains a static magnetic field pointing in beam direction �⃗� = 𝐵0𝑒𝑧, whose interaction with the hydrogen atom is
described by Eq. (1). Its solution for the three sets of 2𝑆1∕2, 2𝑃1∕2 and 2𝑃3∕2 defines the set of unperturbed eigenstates. The eigenenergies depending
n the magnetic field amplitude 𝐵0 together with their fine structure [13] and Lamb-shift [8] corrections are visualized in Fig. 5.

To justify the negligence of other states a rough estimation of the energy differences between neighboring states is made. As the interaction is
at 𝐵0 ≈ 0.5 T, the estimation for the energy difference is done at this point

𝛥𝐸1 = 𝐸
𝛽4
(

2𝑆1∕2
) − 𝐸

𝛼1
(

1𝑆1∕2
) ≈ 10.2 eV (4)

𝛥𝐸2 = 𝐸
𝛽4
(

3𝑆1∕2
) − 𝐸

𝑔1
(

2𝑃3∕2
) ≈ 1.89 eV. (5)

The groundstate, which is of great importance because of its large occupation number, has an energy gap of about 10 eV to the nearest metastable
tate, and even the set with 𝑛 = 3 is far away with a gap of about 2 eV. Subsequently, the entire Hamiltonian of the system needs to be split as

follows

𝐻𝑡𝑜𝑡𝑎𝑙 = 𝐻𝐹 𝑆∕𝐿𝑎𝑚𝑏 +𝐻𝐵 𝑅
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟

=𝐻0

+𝑉𝐿𝑖𝑓 𝑒 + 𝑉𝑆 𝑡𝑎𝑟𝑘 + 𝑉𝑅𝐹𝑒𝑙 𝑒𝑐 𝑡𝑟𝑖𝑐 (𝑡) + 𝑉𝑅𝐹𝑚𝑎𝑔 𝑛𝑒𝑡𝑖𝑐 (𝑡)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

=𝑉 (𝑡)

. (6)

Starting with the term describing the lifetime by a damping factor, the potential takes the following form

𝑉𝐿𝑖𝑓 𝑒 = −𝑖 ℏ
2
(

𝛾1𝛿𝑙 ,0 + 𝛾2𝛿𝑙 ,1
)

𝛿𝐽 ,𝐽 ′𝛿𝐹 ,𝐹 ′𝛿𝑚𝐹 ,𝑚𝐹 ′1, (7)

where 𝛾𝑖 =
1
𝜏𝑖

and 𝜏𝑖 symbolizes the lifetime of the single states [13,14]. As each state of the same set has the same lifetime, this reduces the
roblem to three independent lifetimes. It is also important to note that the lifetime of the 2𝑆 states is much larger than for the 2𝑃 states, i.e
2𝑆1∕2

≫ 𝜏2𝑃1∕2 ≈ 𝜏2𝑃3∕2 .

The contribution of the potential describing the interaction of the static electric field is included as a first-order dipole Stark interaction

𝑉𝑆 𝑡𝑎𝑟𝑘 = 𝑒 ⃗𝜀 ⋅ 𝑟, (8)

where 𝑟 is the position operator for the electron and 𝜀 the electric field [11]. Before having a closer look at the RF electromagnetic field the
volution of the single lifetimes including 𝐻0, 𝑉𝐿𝑖𝑓 𝑒 and 𝑉𝑆 𝑡𝑎𝑟𝑘 for 𝜀 = 𝜀0𝑒𝑥 is given in Fig. 6.

Its solution is obtained by solving the eigenproblem for those potentials with the necessary parameter given in Table 3. The real part of the
igenvalue corresponds to the eigenenergy, whereas the imaginary part is equal to − 𝛤 ℏ

2 = − ℏ
2𝑇 , with 𝑇 being the new lifetime of the state. Here

t should be noted that the lifetime of individual metastable states can be drastically reduced due to the increasing transition probabilities by
decreasing energy gaps. Their decay runs over the 2𝑃 sets, so that the occupation numbers of these short-living 2𝑃 states rise sharply for a brief
moment before decaying into the groundstate. Taking advantage of this moment, it is then possible to populate with the RF electromagnetic field
the other metastable states that are not strongly affected by the changes in lifetimes.

The interaction of the RF electromagnetic field is described for the electric part similar to the static case by a Stark dipole transition (8). The
ame holds true for the magnetic part described by the interaction given in Eq. (1) without the hyperfine splitting term. Therefore, only the fields

of the TM0,𝑛,0 mode are given here by [9]

𝜀 = 𝑅𝑒
[

𝜀0𝐽0

(𝜔0,𝑛,0𝜌
𝑐

)

𝑒−𝑖𝜔0,𝑛,0𝑡𝑒𝑧

]

(9)

�⃗� = 𝐼 𝑚
[

−
𝜀0
𝑐
𝐽1

(𝜔0,𝑛,0𝜌
𝑐

)

𝑒−𝑖𝜔0,𝑛,0𝑡𝑒𝜑

]

, (10)
5 
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Fig. 6. The lifetimes for the sixteen Breit-Rabi states are plotted as function of the magnetic flux density for a static constant magnetic field 𝐵 in beam direction in the presence
of a static electric field perpendicular to the beam axis with a field strength of 𝜀0 = 103 V

m .

Table 2
This table gives the first roots of the Bessel function 𝐽0(𝑥) together with the corresponding resonance
frequencies for a radius of 𝑅 = 7.13 cm.
𝑛 𝑥0,𝑛 𝜔0,𝑛,0

[

GHz
]

𝑓0,𝑛,0
[

GHz
]

1 2.405 10.112 1.609
2 5.520 23.209 3.694
3 8.654 36.387 5.791
4 11.792 49.581 7.891
5 14.931 62.780 9.991
6 18.071 75.982 12.093

Table 3
The table gives all necessary values for the parameters to reproduce the simulations given in Figs. 7 and 8.

𝑔𝑗 a 𝑔𝐼 𝐴
[

MHz
]

𝜏 𝛥𝐸
[

MHz
]

2𝑆1∕2 2.002 [16] 5.586 [17] 177.57 [18] 1∕8.23 s [19]
2𝑃1∕2 0.666 5.586 [17] 59.22 [20] 1.6 ns [21] 1057.84 [22]b

2𝑃3∕2 1.334 5.586 [17] 11.84 [20] 1.6 ns [21] 9912.2 [23]c

a See the formula for the Landé factor in the Appendix.
b Corresponds to the Lamb-shift.
c Corresponds to the fine splitting.

with

𝜔0,𝑛,0 = 2𝜋 𝑓0,𝑛,0 =
𝑥0,𝑛𝑐
𝑅

. (11)

𝑓0,𝑛,0 represents the resonance frequency and 𝑥0,𝑛 the 𝑛th root of the Bessel function 𝐽0(𝑥). Therefore, all interactions are given and the system
of coupled differential equations can be solved for a pure state. In case of a non-pure state, especially in the case of an unpolarized initial beam
ondition, the formalism of the density operator 𝜌 [14] needs to be taken into account. Its time evolution in terms of dissipation is described by

the Lindbladian equation [15]

�̇�(𝑡) = − 𝑖
ℏ
[𝐻(𝑡), 𝜌(𝑡)] +

16
∑

𝑖=1
𝛾𝑖
(

𝜎𝑖𝜌(𝑡)𝜎
†
𝑖 −

1
2

{

𝜎†𝑖 𝜎𝑖, 𝜌(𝑡)
})

. (12)

Here the damping factors 𝛾𝑖 represent the inverse of the lifetimes introduced in Eq. (7) while the sum runs over all sixteen states. The ladder
operators are then defined as

𝜎𝑖 = |𝑔⟩⟨𝑖| and 𝜎†𝑖 = |𝑖⟩⟨𝑔|, (13)

where 𝑔 represents an artificial hydrogen ground state. The Hamiltonian used in the commutator is modified slightly from the one given in
q. (6) by removing the damping potential 𝑉𝐿𝑖𝑓 𝑒, as this process is fulfilled by the additional terms behind the commutator in Eq. (12). Finally,
he last expression symbolizes the anti-commutator {𝐴, 𝐵} = 𝐴𝐵 + 𝐵 𝐴. Only the hyperfine constant has been self-calculated theoretically to
2𝑃3∕2

≈ 11.84 MHz. More details are given in Appendix D. The results for a beam passing in the center at 𝑟 = 0 m at a velocity of 𝑣 = 3.095 ⋅ 105 m
s

re shown in Figs. 7 and 8.
The results show that depending on the setting of the magnetic field amplitude mainly one of the four metastable 2𝑆1∕2 states survives the time

f flight through the device. To reduce the occupation number of the undesired states as background the static electric field can still be applied
6 
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Fig. 7. The probability to find the single states are plotted as function of the magnetic field amplitude. In addition the radio frequency TM0,1,0 mode has been used with a field
strength of 𝜀0 = 1.1 ⋅ 103 V

m and a static electric field strength of 𝜀𝑥 = 1.8 ⋅ 103 V
m . Only the four relevant amplitudes for the metastable states are plotted as the others are all zero.

Fig. 8. The probabilities are given as a function of the magnetic field, where its larger values requires a different RF electromagnetic field. The frequency used was 𝑓2 = 11.94059 GHz
or the mode TM0,6,0 with a field strength of 𝜀0 = 0.9 ⋅ 103 V

m . Finally, the magnitude of the static electric field was raised to 𝜀𝑥 = 2.6 ⋅ 103 V
m . Also here, only the four relevant

mplitudes are illustrated.

along a short distance at the end of the cavity. This then leads to quick decays into the groundstate caused by the much shorter lifetime of the
background state.

3.2. Hydrogen isotopes

So far the focus was onto the hydrogen atom. But also its isotopes deuterium and tritium profit from this device. While tritium has a nuclear
spin of 𝐼 = 1∕2, same as for hydrogen, deuterium has a nuclear spin of 𝐼 = 1. Therefore, tritium has the same quantum numbers as hydrogen and
nly the hyperfine constants differ slightly. This results in a similar behavior for tritium compared to hydrogen.

Deuterium on the other hand has instead of four six metastable states which need to be resolved separately. The necessary solutions for the
reit-Rabi eigenproblem represented in Eq. (1) is given in Appendix B. In addition, the dependencies for each state on the different quantum

numbers for a vanishing external magnetic field are given in Table 4. The three 𝛼 states are then separated in the low magnetic field region,
hereas the 𝛽 states can be isolated at magnetic fields around 𝐵 ≈ 428 mT. This is visualized in the following simulation in Fig. 9.

The necessary constants which differ from the one of hydrogen are given in Table 5. The frequencies given in the Refs. [24,25], used for the
hyperfine constants, represent the energy differences caused by the hyperfine splitting. From there on one must derive the corresponding value for
the hyperfine constant via the Breit-Rabi formulas given in the Appendix B which results in the prefactor of 2∕3 instead of 1 in case of hydrogen.

he hyperfine constant for the 2𝑃3∕2 set changes slightly for different states due to several different effects. As the results in this paper are obtained
for large fields at which the hyperfine splitting is less relevant one simplifies this problem by using the one value for the hyperfine constant given

above and especially neglect off-diagonal elements.

7 
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Fig. 9. The absolute value squared of the single amplitudes of the six metastable deuterium states are given as function of the magnetic field. The frequency used was
2 = 11.94059 GHz for the mode TM0,6,0 with an amplitude of 𝜀0 = 0.9 ⋅ 103 V

m . In addition, the magnitude of the static electric field is 𝜀𝑥 = 2.6 ⋅ 103 V
m .

Table 4
The table defines the Breit-Rabi states at 𝑛 = 2 for deuterium in the case of an vanishing external magnetic
field 𝐵0 = 0.

𝐹 𝑚𝐹 𝐽 𝐿

𝛼1 3∕2 3∕2 1∕2 0
𝛼2 3∕2 1∕2 1∕2 0
𝛼3 3∕2 −1∕2 1∕2 0
𝛽4 3∕2 −3∕2 1∕2 0
𝛽5 1∕2 −1∕2 1∕2 0
𝛽6 1∕2 1∕2 1∕2 0
𝑒1 3∕2 3∕2 1∕2 1
𝑒2 3∕2 1∕2 1∕2 1
𝑒3 3∕2 −1∕2 1∕2 1
𝑓4 3∕2 −3∕2 1∕2 1
𝑓5 1∕2 −1∕2 1∕2 1
𝑓6 1∕2 1∕2 1∕2 1
𝑔1 5∕2 5∕2 3∕2 1
𝑔2 5∕2 3∕2 3∕2 1
𝑔3 5∕2 1∕2 3∕2 1
𝑔4 5∕2 −1∕2 3∕2 1
𝑔5 3∕2 3∕2 3∕2 1
𝑔6 3∕2 1∕2 3∕2 1
ℎ7 5∕2 −3∕2 3∕2 1
ℎ8 5∕2 −5∕2 3∕2 1
ℎ9 3∕2 −1∕2 3∕2 1
ℎ10 3∕2 −3∕2 3∕2 1
ℎ11 1∕2 1∕2 3∕2 1
ℎ12 1∕2 −1∕2 3∕2 1

Table 5
In addition to the unchanged parameters of 𝜏 and 𝑔𝑗 , which can be found in Table 3, this table gives all
necessary values for the parameters to reproduce the simulation given in Fig. 9.

𝑔𝐼 𝐴
[

MHz
]a 𝛥𝐸

[

MHz
]

2𝑆1∕2 0.857438 [26] 2
3
⋅ 40.924454 [24]

2𝑃1∕2 0.857438 [26] 2
3
⋅ 13.633390 [25] 1058.49 [27]b

2𝑃3∕2 0.857438 [26] 1.817671 [25] 9912.59 [28]c

a Deviations from the values given in the sources are explained above in the text.
b Corresponds to the Lamb-shift.
c Corresponds to the fine splitting.

4. Experimental details

To exploit the predictions of the theory described before the two main parts of the device, the magnetic field configuration as well as the cavity
eed to be discussed.
8 
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4.1. Magnetic field configuration

The purpose of the magnetic field configuration is to achieve a homogeneous constant magnetic field in the beam direction over the distance
of the length of the cavity.

For the realization of a magnetic field in longitudinal direction of about 426 mT, but also 57 mT, several options have been considered. The
most straightforward method would be to use a solenoid with a length of about 500 mm and an inner diameter determined by the outer diameter
of the cavity of about 150 mm. The obvious advantage would be that the field can easily be adjusted to these required values, but an estimate
hows that the electric power requirement will be on the order of 10 kW, which would require the use of a dedicated cooling system. We discarded
his option because of this prospect. On the other hand a system of Halbach magnet rings would be able to generate a static field of 400 mT, but
he switching to the lower field value would require a complicated mechanical setup, which would rotate the Halbach rings against each other.
herefore, this option was discarded as well. At present we favor the realization by means of an array of superconducting solenoids, for which we
ave a first design. This design features a layer of larger superconducting solenoids, which serves to reduce the stray magnetic field, but avoids
ero crossings of the longitudinal field.

Up to now the longitudinal magnetic field 𝐵𝑧 and its conditions around the cavity have been discussed, but let us draw the attention towards
he radial magnetic field component 𝐵𝜌 as well as the conditions outside of the cavity. For cylindrical magnetic field shapes the relation between
he longitudinal field and the radial component can be derived directly from Maxwell’s equation ∇⃗ ⋅ �⃗� = 0 to

𝐵𝜌 = −𝜌
2
𝜕 𝐵𝑧
𝜕 𝑧 . (14)

Consequently, the radial component vanishes in the part around the cavity which is intended. Nevertheless, the gradients, necessary to achieve the
omogeneous magnetic field in the center around the cavity, can produce electric fields in the rest frame of those atoms positioned off-axis, which

then quenches them to the groundstate. Therefore, for special applications with a large count rate one would need to have a long holding field
and by this a slow decrease over length to reduce the electric field seen in the rest frame by the atoms. Nevertheless, the electric field in the rest
frame is directly proportional to the beam velocity and the radial magnetic field. Therefore, the quenching should be similar to the old spin filter
as long as the gradient of the magnetic field component along the beam axis is similar to the one given in [2]. This is fixed by the above relation
educing the radial magnetic field component (14). By reducing the radial beam profile, a magnetic field configuration with a larger gradient can
e used.

4.2. Cavity

As described in Ref. [2], the cavity consists of four quadrants forming a cylinder with the height ℎ and the radius 𝑅. On two parallel ones the
tatic electric field is applied while on the others the RF electromagnetic fields are induced and the power output is measured. In addition, the
avity should be able to create both resonance frequencies and has a sufficiently high quality factor 𝑄 to resolve the individual peaks. Moreover,
t needs to provide the coupled RF electromagnetic fields with enough power to make transitions possible. As the quadrants are isolated, meaning
ot connected to each other, the quality factor is much worse than theoretically expected. For the already existing device a quality factor between
000 and 3000 is sufficient to fulfill the conditions permitting the separation of the two 𝛼 peaks from each other [2]. The quality factor 𝑄 is defined
y

𝑄 =
𝑓0
𝛥𝑓

, (15)

with 𝑓0 being the resonance frequency and 𝛥𝑓 the frequency half width. The frequency half width 𝛥𝑓 should not exceed a certain value to be able
to resolve both peaks individually from each other. Therefore, the upper limit is given experimentally from the old spin filter in [2]. The resonance
frequency of the TM0,6,0 mode is roughly ten times larger compared to the TM0,1,0. Consequently, if one wants to run the new resonance frequency
with the same cavity and with the upper limit of the frequency half width 𝛥𝑓 , one would need to realize a quality factor of 𝑄 ≈ 16000. To prove
this, one needs to simulate not only one possible frequency, which is perfectly coupled into the system but a bunch of modes with decreasing power
for each mode further away from the resonance. A typical frequency spectrum inside a cavity [9] is represented by a Lorentz distribution

𝑓 (𝜔, 𝜔0, 𝑄) = 1
(

𝜔 − 𝜔0
)2 +

(

𝜔0
2𝑄

)2
, (16)

and illustrated in Fig. 10. The maximum of the Lorentz curve is given at the resonance frequency, whereas the half width depends on the quality
factor 𝑄. In the limit 𝑄 → ∞ the Lorentz curve turns into a delta distribution at the point of the resonance frequency. This represents the case of
an ideal cavity, which has been discussed in the previous sections.

Moreover, the entire electric field created inside the cavity by the RF electromagnetic fields can be modeled as a sum over all modes

𝜀𝑅𝐹 (𝑡) =
∑

𝑘
𝜀𝑅𝐹 𝑘 (𝑡) ≈

∑

𝑘
𝜀0,𝑘𝐽0

(𝑥0,𝑛𝜌
𝑅

)

cos
(

𝜔𝑘𝑡
)

𝑒𝑧. (17)

The decrease in power for each mode of resonance is embedded in the amplitudes 𝜀0,𝑘

𝜀0,𝑘 = 𝜀0
𝑓
(

𝜔𝑘, 𝜔0, 𝑄
)

∑

𝑘 𝑓
(

𝜔𝑘, 𝜔0, 𝑄
) , (18)

where the denominator is given to normalize the sum of all modes to a given entire electric field amplitude 𝜀0 corresponding to the applied power.
In addition, different resonance frequencies, especially mode TM0,5,0, can be ignored as their resonance frequencies are far away from the modeled
frequency area as given in Table 2. Modified simulations show different outcomes depending on the quality factor 𝑄 in Figs. 11 and 12. In Fig. 11
a rather small quality factor 𝑄 = 1600 is used which allows too many modes to couple into the cavity such that the peaks cannot be properly
separated from each other. In the case of a larger quality factor 𝑄 = 16000, in Fig. 12, the background is reduced and the peaks take similar shapes
s in the case of an ideal cavity.
9 
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Fig. 10. The Lorentz curve is given for a resonance frequency of 𝑓0 ≈ 11.94059 GHz and a quality factor of 𝑄 = 1600.

Fig. 11. Simulation of the probabilities to find the single 𝑛 = 2 states for a cavity given with a quality factor of 𝑄 = 1600.

Let us have a closer look on the electric fields from the RF electromagnetic waves produced in the cavity. As they are directly proportional to
he Bessel functions 𝐽0 and 𝐽1 represented in Fig. 13 it is enough to focus on them.

A large difference between the two modes is visible in the Bessel functions in Fig. 13. The beam enters the cavity with a given beam profile and,
more importantly, a non-negligible beam profile in the diameter. For the TM0,1,0 mode this is not very important as the Bessel function 𝐽0(TM0,1,0)
decreases slowly. In contrast the Bessel function of mode TM0,6,0 consist of six roots meaning that 𝐽0(TM0,6,0) varies much faster. If the beam diameter
exceeds 0.5 cm parts of the 𝛼1,2 states for the first respectively second peak would survive and produce an additional background. Therefore, the
separation of both peaks would get worse. This problem can be avoided by an aperture in front of the device to reduce the beam size. As discussed
previously this is an idea to realize both spin filter types in one single device. Depending on the experiment a different mode or cavity type could
be employed to avoid the smaller count rate caused by using an aperture.

As mentioned above the radius 𝑅 of the cavity needs to be changed for operating the two different modes. Given that 𝑅2 > 𝑅1 the mode TM0,1,0
needs to be tuned by 𝛥𝑅. This can be realized by introducing small bars equally distributed from the surface inside the cavity controlled by a

otor.

5. Conclusion and outlook

This new device combines the previous known method to separate single 𝛼 states from a metastable hydrogen beam with the ability to filter also
individual 𝛽 states. This method is effective not only for hydrogen, but also its isotopes, tritium and deuterium. As the analysis of the Schrödinger
quation is very accurate in describing the kinematics of a system with the new spin filter, more states can be verified experimentally. One of the
xperiments that benefits from this is the spectroscopy measurements involving a special configuration of a Sona transition unit [29]. As in this
10 
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Fig. 12. Simulation of the probabilities to find the single 𝑛 = 2 states for a cavity given with a quality factor of 𝑄 = 16000.

Fig. 13. The Bessel functions are illustrated for the two transversal magnetic modes TM0,1∕6,0 with respect to the running parameter 𝜌 of the radius 𝑅 for the cavity.

experiment quantum oscillations between the four metastable hydrogen 2𝑆1∕2 states are visible but currently the occupation numbers of the two 𝛼
states individually are measurable. When building such a device, care must be taken to ensure that the magnetic field is very homogeneous at the
point where the cavity is installed, as any kind of disturbance would minimize the intensity. Furthermore, the design of the cavity as the central
component can be challenging if one wants to combine both types of spin filters in one device.

To conclude, also the helium ion and its prominent isotope 3He+ are interesting candidates to profit from this development as their metastable
tates have reasonable long lifetimes [30] and their ionic structures are hydrogenlike. Therefore, it should be possible to extend the spin filter

concept for their purpose.
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Appendix A. Breit-Rabi solutions for hydrogen

For this paper a lot of states and their eigenenergies have been introduced. In this section these Breit-Rabi states and their energies fulfilling
the eigenproblem of Eq. (1) in addition to their relative energy corrections due to fine splitting (𝐹 𝑆) and Lamb shift

(

𝛥𝐸𝐿𝑎𝑚𝑏
)

are defined. First
for the 2𝑆1∕2 set in the |

|

𝐹 , 𝑚𝐹 , 𝐽 , 𝐿⟩ basis
|𝛼1⟩ = |1, 1, 1∕2, 0⟩

𝐸𝛼1 =
𝐴2𝑆1∕2

4
+ 1

2
(

𝑔𝑆𝜇𝐵 − 𝑔𝐼𝜇𝑘
)

𝐵0

|𝛼2⟩ =
1

√

1 + 𝑥2(𝐵)
(𝑥(𝐵)|0, 0, 1∕2, 0⟩ + |1, 0, 1∕2, 0⟩)

with 𝑥(𝐵) =
(

𝑔𝑆𝜇𝐵 + 𝑔𝐼𝜇𝑘
)

𝐵0

𝐴2𝑆1∕2
+
√

𝐴2
2𝑆1∕2

+
(

𝑔𝑆𝜇𝐵 + 𝑔𝐼𝜇𝑘
)2 𝐵2

0

𝐸𝛼2 = −
𝐴2𝑆1∕2

4
+ 1

2

√

𝐴2
2𝑆1∕2

+
(

𝑔𝑆𝜇𝐵 + 𝑔𝐼𝜇𝑘
)2 𝐵2

0

|𝛽3⟩ = |1,−1, 1∕2, 0⟩

𝐸𝛽3 =
𝐴2𝑆1∕2

4
− 1

2
(

𝑔𝑆𝜇𝐵 − 𝑔𝐼𝜇𝑘
)

𝐵0

|𝛽4⟩ =
1

√

1 + 𝜔2(𝐵)
(|0, 0, 1∕2, 0⟩ + 𝜔(𝐵)|1, 0, 1∕2, 0⟩)

with 𝜔(𝐵) =
𝐴2𝑆1∕2

−
√

𝐴2
2𝑆1∕2

+
(

𝑔𝑆𝜇𝐵 + 𝑔𝐼𝜇𝑘
)2 𝐵2

0
(

𝑔𝑆𝜇𝐵 + 𝑔𝐼𝜇𝑘
)

𝐵0

𝐸𝛽4 = −
𝐴2𝑆1∕2

4
− 1

2

√

𝐴2
2𝑆1∕2

+
(

𝑔𝑆𝜇𝐵 + 𝑔𝐼𝜇𝑘
)2 𝐵2

0 .

(A.1)

Analogue for 2𝑃1∕2

|𝑒1⟩ = |1, 1, 1∕2, 1⟩

𝐸𝑒1 = −𝛥𝐸𝐿𝑎𝑚𝑏 +
𝐴2𝑃1∕2

4
+ 1

2

(

𝑔𝐽2𝑃1∕2
𝜇𝐵 − 𝑔𝐼𝜇𝑘

)

𝐵0

|𝑒2⟩ =
1

√

1 + 𝑦2(𝐵)
(𝑦(𝐵)|0, 0, 1∕2, 1⟩ + |1, 0, 1∕2, 1⟩)

with 𝑦(𝐵) =

(

𝑔𝐽2𝑃1∕2
𝜇𝐵 + 𝑔𝐼𝜇𝑘

)

𝐵0

𝐴2𝑃1∕2
+

√

𝐴2
2𝑃1∕2

+
(

𝑔𝐽2𝑃1∕2
𝜇𝐵 + 𝑔𝐼𝜇𝑘

)2
𝐵2
0

𝐸𝑒2 = −𝛥𝐸𝐿𝑎𝑚𝑏 −
𝐴2𝑃1∕2

4
+ 1

2

√

𝐴2
2𝑃1∕2

+
(

𝑔𝐽2𝑃1∕2
𝜇𝐵 + 𝑔𝐼𝜇𝑘

)2
𝐵2
0

|𝑓3⟩ = |1,−1, 1∕2, 1⟩

𝐸𝑓3 = −𝛥𝐸𝐿𝑎𝑚𝑏 +
𝐴2𝑃1∕2

4
− 1

2

(

𝑔𝐽2𝑃1∕2
𝜇𝐵 − 𝑔𝐼𝜇𝑘

)

𝐵0

|𝑓4⟩ =
1

√

1 + 𝑧2(𝐵)
(|0, 0, 1∕2, 1⟩ + 𝑧(𝐵)|1, 0, 1∕2, 1⟩)

with 𝑧(𝐵) =
𝐴2𝑃1∕2

−

√

𝐴2
2𝑃1∕2

+
(

𝑔𝐽2𝑃1∕2
𝜇𝐵 + 𝑔𝐼𝜇𝑘

)2
𝐵2
0

(

𝑔𝐽2𝑃1∕2
𝜇𝐵 + 𝑔𝐼𝜇𝑘

)

𝐵0

𝐸 = −𝛥𝐸 −
𝐴2𝑃1∕2 − 1

√

𝐴2 +
(

𝑔 𝜇 + 𝑔 𝜇
)2

𝐵2.

(A.2)
𝑓4 𝐿𝑎𝑚𝑏 4 2 2𝑃1∕2 𝐽2𝑃1∕2 𝐵 𝐼 𝑘 0
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Finally, for the 2𝑃3∕2 set
|𝑔1⟩ = |2, 2, 3∕2, 1⟩

𝐸𝑔1 = 𝐹 𝑆 +
3𝐴2𝑃3∕2

4
+ 1

2

(

3𝑔𝐽2𝑃3∕2
𝜇𝐵 − 𝑔𝐼𝜇𝑘

)

𝐵0

|𝑔2⟩ =
1

√

1 + 𝜒2
1 (𝐵)

(

|2, 1, 3∕2, 1⟩ + 𝜒1(𝐵)|1, 1, 3∕2, 1⟩
)

𝐸𝑔2 = 𝐹 𝑆 −
𝐴2𝑃3∕2

4
+ 𝑔𝐽2𝑃3∕2

𝜇𝐵𝐵0 +

√

𝐴2
2𝑃3∕2

−
𝐴2𝑃3∕2

2

(

𝑔𝐽2𝑃3∕2
𝜇𝐵 + 𝑔𝐼𝜇𝑘

)

𝐵0 +
1
4

(

𝑔𝐽2𝑃3∕2
𝜇𝐵 + 𝑔𝐼𝜇𝑘

)2
𝐵2
0

|𝑔3⟩ =
1

√

1 + 𝜀21(𝐵)
(

|2, 0, 3∕2, 1⟩ + 𝜀1(𝐵)|1, 0, 3∕2, 1⟩
)

𝐸𝑔3 = 𝐹 𝑆 −
𝐴2𝑃3∕2

4
+

√

𝐴2
2𝑃3∕2

+ 1
4

(

𝑔𝐽2𝑃3∕2
𝜇𝐵 + 𝑔𝐼𝜇𝑘

)2
𝐵2
0

|𝑔4⟩ =
1

√

1 + 𝜒2
2 (𝐵)

(

𝜒2(𝐵)|2, 1, 3∕2, 1⟩ + |1, 1, 3∕2, 1⟩
)

𝐸𝑔4 = 𝐹 𝑆 −
𝐴2𝑃3∕2

4
+ 𝑔𝐽2𝑃3∕2

𝜇𝐵𝐵0 −

√

𝐴2
2𝑃3∕2

−
𝐴2𝑃3∕2

2

(

𝑔𝐽2𝑃3∕2
𝜇𝐵 + 𝑔𝐼𝜇𝑘

)

𝐵0 +
1
4

(

𝑔𝐽2𝑃3∕2
𝜇𝐵 + 𝑔𝐼𝜇𝑘

)2
𝐵2
0

|ℎ5⟩ =
1

√

1 + 𝜅21 (𝐵)
(

|2,−1, 3∕2, 1⟩ + 𝜅1(𝐵)|1,−1, 3∕2, 1⟩
)

𝐸ℎ5 = 𝐹 𝑆 −
𝐴2𝑃3∕2

4
− 𝑔𝐽2𝑃3∕2

𝜇𝐵𝐵0 +

√

𝐴2
2𝑃3∕2

+
𝐴2𝑃3∕2

2

(

𝑔𝐽2𝑃3∕2
𝜇𝐵 + 𝑔𝐼𝜇𝑘

)

𝐵0 +
1
4

(

𝑔𝐽2𝑃3∕2
𝜇𝐵 + 𝑔𝐼𝜇𝑘

)2
𝐵2
0

|ℎ6⟩ = |2,−2, 3∕2, 1⟩

𝐸ℎ6 = 𝐹 𝑆 +
3𝐴2𝑃3∕2

4
− 1

2

(

3𝑔𝐽2𝑃3∕2
𝜇𝐵 − 𝑔𝐼𝜇𝑘

)

𝐵0

|ℎ7⟩ =
1

√

1 + 𝜀22(𝐵)
(

𝜀2(𝐵)|2, 0, 3∕2, 1⟩ + |1, 0, 3∕2, 1⟩
)

𝐸ℎ7 = 𝐹 𝑆 −
𝐴2𝑃3∕2

4
−

√

𝐴2
2𝑃3∕2

+ 1
4

(

𝑔𝐽2𝑃3∕2
𝜇𝐵 + 𝑔𝐼𝜇𝑘

)2
𝐵2
0

|ℎ8⟩ =
1

√

1 + 𝜅22 (𝐵)
(

𝜅2(𝐵)|2,−1, 3∕2, 1⟩ + |1,−1, 3∕2, 1⟩
)

𝐸ℎ8 = 𝐹 𝑆 −
𝐴2𝑃3∕2

4
− 𝑔𝐽2𝑃3∕2

𝜇𝐵𝐵0 −

√

𝐴2
2𝑃3∕2

+
𝐴2𝑃3∕2

2

(

𝑔𝐽2𝑃3∕2
𝜇𝐵 + 𝑔𝐼𝜇𝑘

)

𝐵0 +
1
4

(

𝑔𝐽2𝑃3∕2
𝜇𝐵 + 𝑔𝐼𝜇𝑘

)2
𝐵2
0

with 𝜒1∕2(𝐵) = −
√

3
4

(

𝑔𝐽2𝑃3∕2
𝜇𝐵 + 𝑔𝐼𝜇𝑘

)

𝐵0

∓𝐴2𝑃3∕2
± 1

4

(

𝑔𝐽2𝑃3∕2
𝜇𝐵 + 𝑔𝐼𝜇𝑘

)

𝐵0 ∓

√

𝐴2
2𝑃3∕2

−
𝐴2𝑃3∕2

2

(

𝑔𝐽2𝑃3∕2
𝜇𝐵 + 𝑔𝐼𝜇𝑘

)

𝐵0 +
1
4

(

𝑔𝐽2𝑃3∕2
𝜇𝐵 + 𝑔𝐼𝜇𝑘

)2
𝐵2
0

with 𝜀1∕2(𝐵) = −1
2

(

𝑔𝐽2𝑃3∕2
𝜇𝐵 + 𝑔𝐼𝜇𝑘

)

𝐵0

∓𝐴2𝑃3∕2
∓

√

𝐴2
2𝑃3∕2

+ 1
4

(

𝑔𝐽2𝑃3∕2
𝜇𝐵 + 𝑔𝐼𝜇𝑘

)2
𝐵2
0

with 𝜅1∕2(𝐵) = −
√

3
4

(

𝑔𝐽2𝑃3∕2
𝜇𝐵 + 𝑔𝐼𝜇𝑘

)

𝐵0

∓𝐴2𝑃3∕2
∓ 1

4

(

𝑔𝐽2𝑃3∕2
𝜇𝐵 + 𝑔𝐼𝜇𝑘

)

𝐵0 ∓

√

𝐴2
2𝑃3∕2

+
𝐴2𝑃3∕2

2

(

𝑔𝐽2𝑃3∕2
𝜇𝐵 + 𝑔𝐼𝜇𝑘

)

𝐵0 +
1
4

(

𝑔𝐽2𝑃3∕2
𝜇𝐵 + 𝑔𝐼𝜇𝑘

)2
𝐵2
0

.

(A.3)

Appendix B. Breit-Rabi solutions for deuterium

Analogously to the above defined hydrogen states and their energys the solutions for Eq. (1) in the case of a deuterium atom are introduced
ere. First starting with the set 2𝑆 again in the |𝐹 , 𝑚 , 𝐽 , 𝐿⟩ basis
1∕2 𝐹

13 
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|𝛼1⟩ = |

3∕2, 3∕2, 1∕2, 0⟩

𝐸𝛼1 =
𝐴2𝑆1∕2

2
+
( 𝑔𝑆𝜇𝐵

2
− 𝑔𝐼𝜇𝑘

)

𝐵0

|𝛼2⟩ =
1

√

1 + 𝛾21 (𝐵)
(

𝛾1(𝐵)|1∕2, 1∕2, 1∕2, 0⟩ + |

3∕2, 1∕2, 1∕2, 0⟩
)

𝐸𝛼2 = −
𝐴2𝑆1∕2

4
−
𝑔𝐼𝜇𝑘𝐵0

2
+

√

√

√

√

√

𝐴2
2𝑆1∕2

2
+

(𝐴2𝑆1∕2

4
+ 1

2
(

𝑔𝑆𝜇𝐵 + 𝑔𝐼𝜇𝑘
)

𝐵0

)2

|𝛼3⟩ =
1

√

1 + 𝛤 2
1 (𝐵)

(

𝛤1(𝐵)|1∕2,−1∕2, 1∕2, 0⟩ + |

3∕2,−1∕2, 1∕2, 0⟩
)

𝐸𝛼3 = −
𝐴2𝑆1∕2

4
+
𝑔𝐼𝜇𝑘𝐵0

2
+

√

√

√

√

√

𝐴2
2𝑆1∕2

2
+

(𝐴2𝑆1∕2

4
− 1

2
(

𝑔𝑆𝜇𝐵 + 𝑔𝐼𝜇𝑘
)

𝐵0

)2

|𝛽4⟩ = |

3∕2,−3∕2, 1∕2, 0⟩

𝐸𝛽4 =
𝐴2𝑆1∕2

2
−
( 𝑔𝑆𝜇𝐵

2
− 𝑔𝐼𝜇𝑘

)

𝐵0

|𝛽5⟩ =
1

√

1 + 𝛤 2
2 (𝐵)

(

|

1∕2,−1∕2, 1∕2, 0⟩ + 𝛤2(𝐵)|3∕2,−1∕2, 1∕2, 0⟩
)

𝐸𝛽5 = −
𝐴2𝑆1∕2

4
+
𝑔𝐼𝜇𝑘𝐵0

2
−

√

√

√

√

√

𝐴2
2𝑆1∕2

2
+

(𝐴2𝑆1∕2

4
− 1

2
(

𝑔𝑆𝜇𝐵 + 𝑔𝐼𝜇𝑘
)

𝐵0

)2

|𝛽6⟩ =
1

√

1 + 𝛾22 (𝐵)
(

|

1∕2, 1∕2, 1∕2, 0⟩ + 𝛾2(𝐵)|3∕2, 1∕2, 1∕2, 0⟩
)

𝐸𝛽6 = −
𝐴2𝑆1∕2

4
−
𝑔𝐼𝜇𝑘𝐵0

2
−

√

√

√

√

√

𝐴2
2𝑆1∕2

2
+

(𝐴2𝑆1∕2

4
+ 1

2
(

𝑔𝑆𝜇𝐵 + 𝑔𝐼𝜇𝑘
)

𝐵0

)2

with 𝛾1∕2(𝐵) = ∓
√

2
3

(

𝑔𝑆𝜇𝐵 + 𝑔𝐼𝜇𝑘
)

𝐵0

3𝐴2𝑆1∕2
4 + 1

6

(

𝑔𝑆𝜇𝐵 + 𝑔𝐼𝜇𝑘
)

𝐵0 +

√

𝐴2
2𝑆1∕2
2 +

(𝐴2𝑆1∕2
4 + 1

2

(

𝑔𝑆𝜇𝐵 + 𝑔𝐼𝜇𝑘
)

𝐵0

)2

with 𝛤1∕2(𝐵) = ∓
√

2
3

(

𝑔𝑆𝜇𝐵 + 𝑔𝐼𝜇𝑘
)

𝐵0

3𝐴2𝑆1∕2
4 − 1

6

(

𝑔𝑆𝜇𝐵 + 𝑔𝐼𝜇𝑘
)

𝐵0 +

√

𝐴2
2𝑆1∕2
2 +

(𝐴2𝑆1∕2
4 − 1

2

(

𝑔𝑆𝜇𝐵 + 𝑔𝐼𝜇𝑘
)

𝐵0

)2
.

(B.1)

Subsequently, follows the result for the 2𝑃1∕2 set

|𝑒1⟩ = |

3∕2, 3∕2, 1∕2, 1⟩

𝐸𝑒1 = −𝛥𝐸𝐿𝑎𝑚𝑏 +
𝐴2𝑃1∕2

2
+

( 𝑔𝐽2𝑃1∕2
𝜇𝐵

2
− 𝑔𝐼𝜇𝑘

)

𝐵0

|𝑒2⟩ =
1

√

1 + �̃�21 (𝐵)
(

�̃�1(𝐵)|1∕2, 1∕2, 1∕2, 1⟩ + |

3∕2, 1∕2, 1∕2, 1⟩
)

𝐸𝑒2 = −𝛥𝐸𝐿𝑎𝑚𝑏 −
𝐴2𝑃1∕2

4
−
𝑔𝐼𝜇𝑘𝐵0

2
+

√

√

√

√

√

𝐴2
2𝑃1∕2

2
+

(𝐴2𝑃1∕2

4
+ 1

2

(

𝑔𝐽2𝑃1∕2
𝜇𝐵 + 𝑔𝐼𝜇𝑘

)

𝐵0

)2

|𝑒3⟩ =
1

√

1 + 𝛤 2
1 (𝐵)

(

𝛤1(𝐵)|1∕2,−1∕2, 1∕2, 1⟩ + |

3∕2,−1∕2, 1∕2, 1⟩
)

𝐸𝑒3 = −𝛥𝐸𝐿𝑎𝑚𝑏 −
𝐴2𝑃1∕2

4
+
𝑔𝐼𝜇𝑘𝐵0

2
+

√

√

√

√

√

𝐴2
2𝑃1∕2

2
+

(𝐴2𝑃1∕2

4
− 1

2

(

𝑔𝐽2𝑃1∕2
𝜇𝐵 + 𝑔𝐼𝜇𝑘

)

𝐵0

)2

|𝑓4⟩ = |

3∕2,−3∕2, 1∕2, 1⟩

𝐸𝑓4 = −𝛥𝐸𝐿𝑎𝑚𝑏 +
𝐴2𝑃1∕2

2
−

( 𝑔𝐽2𝑃1∕2
𝜇𝐵

2
− 𝑔𝐼𝜇𝑘

)

𝐵0

|𝑓5⟩ =
1

√

(

|

1∕2,−1∕2, 1∕2, 1⟩ + 𝛤2(𝐵)|3∕2,−1∕2, 1∕2, 1⟩
)

1 + 𝛤 2
2 (𝐵)

14 
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𝐸𝑓5 = −𝛥𝐸𝐿𝑎𝑚𝑏 −
𝐴2𝑃1∕2

4
+
𝑔𝐼𝜇𝑘𝐵0

2
−

√

√

√

√

√

𝐴2
2𝑃1∕2

2
+

(𝐴2𝑃1∕2

4
− 1

2

(

𝑔𝐽2𝑃1∕2
𝜇𝐵 + 𝑔𝐼𝜇𝑘

)

𝐵0

)2

|𝑓6⟩ =
1

√

1 + �̃�22 (𝐵)
(

|

1∕2, 1∕2, 1∕2, 1⟩ + �̃�2(𝐵)|3∕2, 1∕2, 1∕2, 1⟩
)

𝐸𝑓6 = −𝛥𝐸𝐿𝑎𝑚𝑏 −
𝐴2𝑃1∕2

4
−
𝑔𝐼𝜇𝑘𝐵0

2
−

√

√

√

√

√

𝐴2
2𝑃1∕2

2
+

(𝐴2𝑃1∕2

4
+ 1

2

(

𝑔𝐽2𝑃1∕2
𝜇𝐵 + 𝑔𝐼𝜇𝑘

)

𝐵0

)2

with �̃�1∕2(𝐵) = ∓
√

2
3

(

𝑔𝐽2𝑃1∕2
𝜇𝐵 + 𝑔𝐼𝜇𝑘

)

𝐵0

3𝐴2𝑃1∕2
4 + 1

6

(

𝑔𝐽2𝑃1∕2
𝜇𝐵 + 𝑔𝐼𝜇𝑘

)

𝐵0 +

√

𝐴2
2𝑃1∕2
2 +

(𝐴2𝑃1∕2
4 + 1

2

(

𝑔𝐽2𝑃1∕2
𝜇𝐵 + 𝑔𝐼𝜇𝑘

)

𝐵0

)2

with 𝛤1∕2(𝐵) = ∓
√

2
3

(

𝑔𝐽2𝑃1∕2
𝜇𝐵 + 𝑔𝐼𝜇𝑘

)

𝐵0

3𝐴2𝑃1∕2
4 − 1

6

(

𝑔𝐽2𝑃1∕2
𝜇𝐵 + 𝑔𝐼𝜇𝑘

)

𝐵0 +

√

𝐴2
2𝑃1∕2
2 +

(𝐴2𝑃1∕2
4 − 1

2

(

𝑔𝐽2𝑃1∕2
𝜇𝐵 + 𝑔𝐼𝜇𝑘

)

𝐵0

)2
.

(B.2)

Finally, the result for the energetically higher positioned 2𝑃3∕2 is given

|𝑔1⟩ = |

5∕2, 5∕2, 3∕2, 1⟩

𝐸𝑔1 = 𝐹 𝑆 +
3𝐴2𝑃3∕2

2
+
⎛

⎜

⎜

⎝

3𝑔𝐽2𝑃3∕2
𝜇𝐵

2
− 𝑔𝐼𝜇𝑘

⎞

⎟

⎟

⎠

𝐵0

|𝑔2⟩ =
1

√

1 + 𝜃21 (𝐵)
(

𝜃1(𝐵)|3∕2, 3∕2, 3∕2, 1⟩ + |

5∕2, 3∕2, 3∕2, 1⟩
)

𝐸𝑔2 = 𝐹 𝑆 +
𝐴2𝑃3∕2

4
+ 𝑔𝐽2𝑃3∕2

𝜇𝐵𝐵0 −
𝑔𝐼𝜇𝑘𝐵0

2
+

√

1
4

(

𝑔𝐽2𝑃3∕2
𝜇𝐵 + 𝑔𝐼𝜇𝑘

)2
𝐵2
0 −

𝐴2𝑃3∕2

4

(

𝑔𝐽2𝑃3∕2
𝜇𝐵 + 𝑔𝐼𝜇𝑘

)

𝐵0 +
25
16
𝐴2
2𝑃3∕2

|𝑔3⟩ =
1

√

1 + 𝛼21 (𝐵) + 𝛽21 (𝐵)
(

𝛽1(𝐵)|1∕2, 1∕2, 3∕2, 1⟩ + 𝛼1(𝐵)|3∕2, 1∕2, 3∕2, 1⟩ + |

5∕2, 1∕2, 3∕2, 1⟩
)

𝐸𝑔3 = 𝐹 𝑆 + 1
30

⎛

⎜

⎜

⎜

⎜

⎝

−20𝐴2𝑃3∕2
+ 15𝑔𝐽2𝑃3∕2 𝜇𝐵𝐵0 +

245𝐴2
2𝑃3∕2

− 60𝐴2𝑃3∕2

(

𝑔𝐽2𝑃3∕2
𝜇𝐵 + 𝑔𝐼𝜇𝑘

)

𝐵0 + 60
(

𝑔𝐽2𝑃3∕2
𝜇𝐵 + 𝑔𝐼𝜇𝑘

)2
𝐵2
0

𝐶1∕3
+ 5𝐶1∕3

⎞

⎟

⎟

⎟

⎟

⎠

|𝑔4⟩ =
1

√

1 + �̃�21 (𝐵) + 𝛽21 (𝐵)
(

𝛽1(𝐵)|1∕2,−1∕2, 3∕2, 1⟩ + �̃�1(𝐵)|3∕2,−1∕2, 3∕2, 1⟩ + |

5∕2,−1∕2, 3∕2, 1⟩
)

𝐸𝑔4 = 𝐹 𝑆 + 1
30

⎛

⎜

⎜

⎜

⎜

⎝

−5
(

4𝐴2𝑃3∕2
+ 3𝑔𝐽2𝑃3∕2 𝜇𝐵𝐵0

)

+
245𝐴2

2𝑃3∕2
+ 60𝐴2𝑃3∕2

(

𝑔𝐽2𝑃3∕2
𝜇𝐵 + 𝑔𝐼𝜇𝑘

)

𝐵0 + 60
(

𝑔𝐽2𝑃3∕2
𝜇𝐵 + 𝑔𝐼𝜇𝑘

)2
𝐵2
0

�̃�1∕3
+ 5�̃�1∕3

⎞

⎟

⎟

⎟

⎟

⎠

|𝑔5⟩ =
1

√

1 + 𝜃22 (𝐵)
(

|

3∕2, 3∕2, 3∕2, 1⟩ + 𝜃2(𝐵)|5∕2, 3∕2, 3∕2, 1⟩
)

𝐸𝑔5 = 𝐹 𝑆 +
𝐴2𝑃3∕2

4
+ 𝑔𝐽2𝑃3∕2

𝜇𝐵𝐵0 −
𝑔𝐼𝜇𝑘𝐵0

2
−

√

1
4

(

𝑔𝐽2𝑃3∕2
𝜇𝐵 + 𝑔𝐼𝜇𝑘

)2
𝐵2
0 −

𝐴2𝑃3∕2

4

(

𝑔𝐽2𝑃3∕2
𝜇𝐵 + 𝑔𝐼𝜇𝑘

)

𝐵0 +
25
16
𝐴2
2𝑃3∕2

|𝑔6⟩ =
1

√

1 + 𝛼22 (𝐵) + 𝛽22 (𝐵)
(

𝛽2(𝐵)|1∕2, 1∕2, 3∕2, 1⟩ + |

3∕2, 1∕2, 3∕2, 1⟩ + 𝛼2(𝐵)|5∕2, 1∕2, 3∕2, 1⟩
)

𝐸𝑔6 = 𝐹 𝑆 + 1
12

⎛

⎜

⎜

⎝

−8𝐴2𝑃3∕2
+ 6𝑔𝐽2𝑃3∕2 𝜇𝐵𝐵0 +

49𝑏𝐴2
2𝑃3∕2

− 12𝑏𝐴2𝑃3∕2
𝑎 + 12𝑏𝑎2

𝐶1∕3
− 𝑏𝐶1∕3

⎞

⎟

⎟

⎠

|ℎ7⟩ =
1

√

1 + 𝜙2
1(𝐵)

(

𝜙1(𝐵)|3∕2,−3∕2, 3∕2, 1⟩ + |

5∕2,−3∕2, 3∕2, 1⟩
)

15 
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𝐸ℎ7 = 𝐹 𝑆 +
𝐴2𝑃3∕2

4
− 𝑔𝐽2𝑃3∕2

𝜇𝐵𝐵0 +
𝑔𝐼𝜇𝑘𝐵0

2
+

√

1
4

(

𝑔𝐽2𝑃3∕2
𝜇𝐵 + 𝑔𝐼𝜇𝑘

)2
𝐵2
0 +

𝐴2𝑃3∕2

4

(

𝑔𝐽2𝑃3∕2
𝜇𝐵 + 𝑔𝐼𝜇𝑘

)

𝐵0 +
25
16
𝐴2
2𝑃3∕2

|ℎ8⟩ = |

5∕2,−5∕2, 3∕2, 1⟩

𝐸ℎ8 = 𝐹 𝑆 +
3𝐴2𝑃3∕2

2
−
⎛

⎜

⎜

⎝

3𝑔𝐽2𝑃3∕2
𝜇𝐵

2
− 𝑔𝐼𝜇𝑘

⎞

⎟

⎟

⎠

𝐵0

(B.3)

|ℎ9⟩ =
1

√

1 + �̃�22 (𝐵) + 𝛽22 (𝐵)
(

𝛽2(𝐵)|1∕2,−1∕2, 3∕2, 1⟩ + |

3∕2,−1∕2, 3∕2, 1⟩ + �̃�2(𝐵)|5∕2,−1∕2, 3∕2, 1⟩
)

𝐸ℎ9 = 𝐹 𝑆 + 1
30

⎛

⎜

⎜

⎜

⎜

⎝

−5
(

4𝐴2𝑃3∕2
+ 3𝑔𝐽2𝑃3∕2 𝜇𝐵𝐵0

)

+
5𝑏

(

49𝐴2
2𝑃3∕2

+ 12𝐴2𝑃3∕2
𝑎 + 12𝑎2

)

2�̃�1∕3
− 5

2
�̃��̃�1∕3

⎞

⎟

⎟

⎟

⎟

⎠

|ℎ10⟩ =
1

√

1 + 𝜙2
2(𝐵)

(

|

3∕2,−3∕2, 3∕2, 1⟩ + 𝜙2(𝐵)|5∕2,−3∕2, 3∕2, 1⟩
)

𝐸ℎ10 = 𝐹 𝑆 +
𝐴2𝑃3∕2

4
− 𝑔𝐽2𝑃3∕2

𝜇𝐵𝐵0 +
𝑔𝐼𝜇𝑘𝐵0

2
−

√

1
4

(

𝑔𝐽2𝑃3∕2
𝜇𝐵 + 𝑔𝐼𝜇𝑘

)2
𝐵2
0 +

𝐴2𝑃3∕2

4

(

𝑔𝐽2𝑃3∕2
𝜇𝐵 + 𝑔𝐼𝜇𝑘

)

𝐵0 +
25
16
𝐴2
2𝑃3∕2

|ℎ11⟩ =
1

√

1 + 𝛼23 (𝐵) + 𝛽23 (𝐵)
(

|

1∕2, 1∕2, 3∕2, 1⟩ + 𝛼3(𝐵)|3∕2, 1∕2, 3∕2, 1⟩ + 𝛽3(𝐵)|5∕2, 1∕2, 3∕2, 1⟩
)

𝐸ℎ11 = 𝐹 𝑆 + 1
12

⎛

⎜

⎜

⎜

⎜

⎝

−8𝐴2𝑃3∕2
+ 6𝑔𝐽2𝑃3∕2 𝜇𝐵𝐵0 −

�̃�
(

49𝐴2
2𝑃3∕2

− 12𝐴2𝑃3∕2
𝑎 + 12𝑎2

)

𝐶1∕3
+ 𝑏𝐶1∕3

⎞

⎟

⎟

⎟

⎟

⎠

|ℎ12⟩ =
1

√

1 + �̃�23 (𝐵) + 𝛽23 (𝐵)
(

|

1∕2,−1∕2, 3∕2, 1⟩ + �̃�3(𝐵)|3∕2,−1∕2, 3∕2, 1⟩ + 𝛽3(𝐵)|5∕2,−1∕2, 3∕2, 1⟩
)

𝐸ℎ12 = 𝐹 𝑆 + 1
30

⎛

⎜

⎜

⎜

⎜

⎝

−5
(

4𝐴2𝑃3∕2
+ 3𝑔𝐽2𝑃3∕2 𝜇𝐵𝐵0

)

−
5�̃�

(

49𝐴2
2𝑃3∕2

+ 12𝐴2𝑃3∕2
𝑎 + 12𝑎2

)

2�̃�1∕3
+ 5

2
𝑏�̃�1∕3

⎞

⎟

⎟

⎟

⎟

⎠

with 𝜃1∕2(𝐵) = ±
√

6
5

(

𝑔𝐽2𝑃3∕2
𝜇𝐵 + 𝑔𝐼𝜇𝑘

)

𝐵0

5𝐴2𝑃3∕2
4 − 1

10

(

𝑔𝐽2𝑃3∕2
𝜇𝐵 + 𝑔𝐼𝜇𝑘

)

𝐵0 +

√

1
4

(

𝑔𝐽2𝑃3∕2
𝜇𝐵 + 𝑔𝐼𝜇𝑘

)2
𝐵2
0 −

𝐴2𝑃3∕2
4

(

𝑔𝐽2𝑃3∕2
𝜇𝐵 + 𝑔𝐼𝜇𝑘

)

𝐵0 +
25
16𝐴

2
2𝑃3∕2

with 𝜙1∕2(𝐵) = ±
√

6
5

(

𝑔𝐽2𝑃3∕2
𝜇𝐵 + 𝑔𝐼𝜇𝑘

)

𝐵0

5𝐴2𝑃3∕2
4 + 1

10

(

𝑔𝐽2𝑃3∕2
𝜇𝐵 + 𝑔𝐼𝜇𝑘

)

𝐵0 +

√

1
4

(

𝑔𝐽2𝑃3∕2
𝜇𝐵 + 𝑔𝐼𝜇𝑘

)2
𝐵2
0 +

𝐴2𝑃3∕2
4

(

𝑔𝐽2𝑃3∕2
𝜇𝐵 + 𝑔𝐼𝜇𝑘

)

𝐵0 +
25
16𝐴

2
2𝑃3∕2

with 𝐶 = 143𝐴3
2𝑃3∕2

+ 18𝐴2
2𝑃3∕2

𝑎 − 72𝐴2𝑃3∕2
𝑎2 +

√

𝐴2
2𝑃3∕2

(

143𝐴2
2𝑃3∕2

+ 18𝐴2𝑃3∕2
𝑎 − 72𝑎2

)2
−
(

49𝐴2
2𝑃3∕2

− 12𝐴2𝑃3∕2
𝑎 + 12𝑎2

)3

(B.4)
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with �̃� = 143𝐴3
2𝑃3∕2

− 18𝐴2
2𝑃3∕2

𝑎 − 72𝐴2𝑃3∕2
𝑎2 +

√

𝐴2
2𝑃3∕2

(

−143𝐴2
2𝑃3∕2

+ 18𝐴2𝑃3∕2
𝑎 + 72𝑎2

)2
−
(

49𝐴2
2𝑃3∕2

+ 12𝐴2𝑃3∕2
𝑎 + 12𝑎2

)3

with 𝛼1∕�̃�1(𝐵) = −3
5

(

𝑔𝐽2𝑃3∕2
𝜇𝐵 + 𝑔𝐼𝜇𝑘

)

𝐵0

−𝐴2𝑃3∕2
+
(

± 11
30 𝑔𝐽2𝑃3∕2

𝜇𝐵 ∓ 2
15 𝑔𝐼𝜇𝑘

)

𝐵0 −
(

𝐸𝑔3∕𝑔4 − 𝐹 𝑆
)

− 5
9

(

𝑔𝐽2𝑃3∕2
𝜇𝐵+𝑔𝐼𝜇𝑘

)2
𝐵2
0

−
5𝐴2𝑃3∕2

2 ±
(

5
6 𝑔𝐽2𝑃3∕2

𝜇𝐵+
1
3 𝑔𝐼𝜇𝑘

)

𝐵0−
(

𝐸𝑔3∕𝑔4−𝐹 𝑆
)

with 𝛼2∕�̃�2(𝐵) = −3
5

(

𝑔𝐽2𝑃3∕2
𝜇𝐵 + 𝑔𝐼𝜇𝑘

)

𝐵0

3𝐴2𝑃3∕2
2 ± 1

5

(

3
2 𝑔𝐽2𝑃3∕2

𝜇𝐵 − 𝑔𝐼𝜇𝑘

)

𝐵0 −
(

𝐸𝑔6∕ℎ9 − 𝐹 𝑆
)

with 𝛼3∕�̃�3(𝐵) = −
√

5
3

(

𝑔𝐽2𝑃3∕2
𝜇𝐵 + 𝑔𝐼𝜇𝑘

)

𝐵0

−𝐴2𝑃3∕2
+
(

± 11
30 𝑔𝐽2𝑃3∕2

𝜇𝐵 ∓ 2
15 𝑔𝐼𝜇𝑘

)

𝐵0 −
(

𝐸ℎ11∕ℎ12 − 𝐹 𝑆
)

− 9
25

(

𝑔𝐽2𝑃3∕2
𝜇𝐵+𝑔𝐼𝜇𝑘

)2
𝐵2
0

3𝐴2𝑃3∕2
2 ± 1

5

(

3
2 𝑔𝐽2𝑃3∕2

𝜇𝐵−𝑔𝐼𝜇𝑘

)

𝐵0−
(

𝐸ℎ11∕ℎ12−𝐹 𝑆
)

with 𝛽1∕𝛽1(𝐵) = 1
√

5

(

𝑔𝐽2𝑃3∕2
𝜇𝐵 + 𝑔𝐼𝜇𝑘

)2
𝐵2
0

(

−𝐴2𝑃3∕2
+
(

± 11
30 𝑔𝐽2𝑃3∕2

𝜇𝐵 ∓ 2
15 𝑔𝐼𝜇𝑘

)

𝐵0 − �̃�𝑔3∕𝑔4

) (
−

5𝐴2𝑃3∕2
2 +

(

± 5
6 𝑔𝐽2𝑃3∕2

𝜇𝐵 ± 1
3 𝑔𝐼𝜇𝑘

)

𝐵0 − �̃�𝑔3∕𝑔4

)

− 5
9𝑎

2

with 𝛽2∕𝛽2(𝐵) = −
√

5
3

(

𝑔𝐽2𝑃3∕2
𝜇𝐵 + 𝑔𝐼𝜇𝑘

)

𝐵0

−
5𝐴2𝑃3∕2

2 ±
(

5
6 𝑔𝐽2𝑃3∕2

𝜇𝐵 + 1
3 𝑔𝐼𝜇𝑘

)

𝐵0 −
(

𝐸𝑔6∕ℎ9 − 𝐹 𝑆
)

with 𝛽3∕𝛽3(𝐵) = 1
√

5

(

𝑔𝐽2𝑃3∕2
𝜇𝐵 + 𝑔𝐼𝜇𝑘

)2
𝐵2
0

(

−𝐴2𝑃3∕2
+
(

± 11
30 𝑔𝐽2𝑃3∕2

𝜇𝐵 ∓ 2
15 𝑔𝐼𝜇𝑘

)

𝐵0 − �̃�ℎ11∕ℎ12

) ( 3𝐴2𝑃3∕2
2 + 1

5

(

± 3
2 𝑔𝐽2𝑃3∕2

𝜇𝐵 ∓ 𝑔𝐼𝜇𝑘

)

𝐵0 − �̃�ℎ11∕ℎ12

)

− 9
25𝑎

2

to reduce the length of the equations:

𝑏 = −1 +
√

3𝑖, �̃� = 1 +
√

3𝑖, 𝑎 =
(

𝑔𝐽2𝑃3∕2
𝜇𝐵 + 𝑔𝐼𝜇𝑘

)

𝐵0, �̃�𝑥∕𝑦 = 𝐸𝑥∕𝑦 − 𝐹 𝑆 .

(B.5)

Appendix C. Landé factor

The orbital angular momentum �⃗� and the electron spin 𝑆 are combined to the total angular momentum 𝐽 = �⃗� ⊗ 1 + 1 ⊗ 𝑆 of the electron.
ince those angular momenta create magnetic moments which are proportional to their anomalous g-factors 𝑔𝑙∕𝑠 one needs to combine these to a
ew g-factor for 𝐽 called the Landé factor and is given by

𝑔𝑗 =
1
2
𝑔𝑠 [𝐽 (𝐽 + 1) + 𝑆 (𝑆 + 1) − 𝐿 (𝐿 + 1)] + 𝑔𝑙 [𝐽 (𝐽 + 1) + 𝐿 (𝐿 + 1) − 𝑆 (𝑆 + 1)]

𝐽 (𝐽 + 1) . (C.1)

The g-factors then equal to 𝑔𝑠 ≈ 2.002 [16] and 𝑔𝑙 = 1 [31] which leads to the different Landé factors of 𝑔1∕2 =
1
3

(

4 − 𝑔𝑠
)

and 𝑔3∕2 =
1
3

(

2 + 𝑔𝑠
)

for
he different sets of states.

Appendix D. Hyperfine constant

For hyperfine transitions between states from the same set of states the Hamiltonian describing the interaction can be reduced to
𝐻𝐻 𝑦𝑝 = 𝐴𝐼 ⋅ 𝐽

ℏ2
. (D.1)

𝐴 is then the hyperfine splitting constant, which can be calculated theoretically to first order [32] for 𝐿 = 0 by

𝐴 =
𝑒2𝑔𝐼ℏ2

3𝜀0𝑐2𝑚𝑒𝑚𝑝
1
4𝜋

|𝑅𝑛,0(𝑟 = 0)|2, (D.2)

and for 𝐿 ≠ 0 by

𝐴 =
𝑒2ℏ2𝑔𝐼

2𝑚𝑒𝑚𝑝4𝜋 𝜀0𝑐2𝑗(𝑗 + 1)𝑎30𝑛3 (𝑙 + 1∕2)
. (D.3)
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Data availability

Data will be made available on request.
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