001035080 001__ 1035080
001035080 005__ 20250203103419.0
001035080 0247_ $$2datacite_doi$$a10.34734/FZJ-2025-00176
001035080 037__ $$aFZJ-2025-00176
001035080 041__ $$aEnglish
001035080 1001_ $$0P:(DE-Juel1)194959$$aOuardghi, Abdelouahed$$b0$$eCorresponding author$$ufzj
001035080 1112_ $$aSIAM Conference on Parallel Processing for Scientific Computing$$cBaltimore$$d2024-03-05 - 2024-03-08$$gSIAM PP24$$wUSA
001035080 245__ $$aA Parallel-in-Time Spectral Deferred Correction Finite Element Method for Unsteady Incompressible Viscous Flow Problems
001035080 260__ $$c2024
001035080 3367_ $$033$$2EndNote$$aConference Paper
001035080 3367_ $$2DataCite$$aOther
001035080 3367_ $$2BibTeX$$aINPROCEEDINGS
001035080 3367_ $$2DRIVER$$aconferenceObject
001035080 3367_ $$2ORCID$$aLECTURE_SPEECH
001035080 3367_ $$0PUB:(DE-HGF)6$$2PUB:(DE-HGF)$$aConference Presentation$$bconf$$mconf$$s1736838725_28647$$xAfter Call
001035080 520__ $$aSimulating unsteady viscous flows by numerically solving the time-dependent Navier-Stokes equations is a computationally expensive challenge. However, while spatial parallelization can reduce computational costs, temporal integration of time-sensitive applications often requires a very large number of time steps. Therefore, more parallelism in numerical time-stepping schemes for further speedup is required. The present work proposes and analyzes a parallel-in-time spectral deferred correction method for the solution of the unsteady incompressible viscous flow problems governed by parabolic–elliptic PDEs. The temporal discretization employs the Spectral Deferred Correction (SDC) method in parallel, which iteratively computes a higher-order collocation solution by conducting a sequence of correction sweeps through the utilization of a low-order time-stepping technique. A standard finite element method is considered for spatial discretization due to its ability to accurately capture complex geometries and boundary conditions. The goal of this work is to illustrate and analyze the properties of the parallel-in-time method through numerical experiments including flows past a cylinder (using the standard DFG 2D-3 benchmark) which is selected as an unsteady flow example.
001035080 536__ $$0G:(DE-HGF)POF4-5112$$a5112 - Cross-Domain Algorithms, Tools, Methods Labs (ATMLs) and Research Groups (POF4-511)$$cPOF4-511$$fPOF IV$$x0
001035080 536__ $$0G:(DE-Juel1)BMBF-16ME0708$$aStroemungsRaum - Neuartige Exascale-Architekturen mit heterogenen Hardwarekomponenten für Strömungssimulationen (BMBF-16ME0708)$$cBMBF-16ME0708$$x1
001035080 7001_ $$0P:(DE-Juel1)132268$$aSpeck, Robert$$b1$$ufzj
001035080 8564_ $$uhttps://www.siam.org/conferences-events/past-event-archive/pp24/
001035080 8564_ $$uhttps://juser.fz-juelich.de/record/1035080/files/Presentation.pdf$$yOpenAccess
001035080 909CO $$ooai:juser.fz-juelich.de:1035080$$pdriver$$pVDB$$popen_access$$popenaire
001035080 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)194959$$aForschungszentrum Jülich$$b0$$kFZJ
001035080 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)132268$$aForschungszentrum Jülich$$b1$$kFZJ
001035080 9131_ $$0G:(DE-HGF)POF4-511$$1G:(DE-HGF)POF4-510$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5112$$aDE-HGF$$bKey Technologies$$lEngineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action$$vEnabling Computational- & Data-Intensive Science and Engineering$$x0
001035080 9141_ $$y2024
001035080 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001035080 920__ $$lyes
001035080 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0
001035080 980__ $$aconf
001035080 980__ $$aVDB
001035080 980__ $$aUNRESTRICTED
001035080 980__ $$aI:(DE-Juel1)JSC-20090406
001035080 9801_ $$aFullTexts