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Motivation

Member of the Helmholtz Association December 18th, 2024 Slide 2



DFG flow around cylinder: Benchmark 2D-3


∂u
∂t + u · ∇u +∇p− ν∆u = g in Ω× [0, T]

∇ · u = 0 in Ω× [0, T]
u = uin on Γ1 × [0, T]
u = 0 on Γ2 × [0, T]

ν∂nu − pn = 0 on Γ3 × [0, T]

with
uin =

(4Uy(0.41− y)
0.412

,0),

U = U(t) = 1.5sin(πt/8)
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IMEX SDC (SISDC) using projection-based splitting scheme
DFG Flow around cylinder: Chorin’s projection method

1 Step 1: Predictor Step:

u∗ − un

∆t
+ (un · ∇)un = ν∆u∗ + g

2 Step 2: Corrector Step:

∆pn+1 =
1
∆t

∇ · u∗

un+1 = u∗ −∆t∇pn+1

Figure: Velocity, pressure, vorticity, magnitude and
streamlines at time t = 5.5s
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IMEX SDC (SISDC) using projection-based splitting scheme
Convection-diffusion equation

Convection-diffusion equation
∂u
∂t

= −(u · ∇)u + ν∆u + g

Spatial discretization

[M]
du
dt

= −[Cu]u − [k]u + [M]g

ODE

[M]
du
dt

= f(u, t) = fE(u, t) + fI(u, t),

where fE(u, t) = −[Cu]u and fI(u, t) = −[k]u + [M]g
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SISDC: Semi-implicit spectral deferred corrections method
Consider the fully implicit collocation problem

(M−∆tQF)⃗u = Mu⃗0,

whereM = IM ⊗ [M], u⃗ = (u1, · · · , uM)
T , u⃗0 = (u0, · · · , u0)

T , and F(⃗u) = (f(u1), · · · , f(uM)).
Precondtionated Picard iteration for the collocation problem

(M−∆tQ∆F) u⃗k+1 = Mu⃗0 +∆t (Q− Q∆) F(⃗uk).

IMEX SDC sweep

(M−∆t(Q∆,EFE + Q∆,IFI)) u⃗k+1 = Mu⃗0 +∆tQF(⃗uk)−∆t (Q∆,EFE + Q∆,IFI) u⃗k.

=⇒ Q∆,I lower triangular and Q∆,E strictly lower triangular for explicit integration
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IMEX SDC (SISDC) for NSE using projection-based splitting scheme
Step 1 Predictor step:

[M]uk+1
m = [M]u0 +∆t

M∑
j=1

qm,jf(uk
j , τj)

+∆t
m−1∑
j=1

q∆,E
m,j

[
fE(uk+1

j , τj)− fE(uk
j , τj)

]
+∆t

m∑
j=1

q∆,I
m,j

[
fI(uk+1

j , τj)− fI(uk
j , τj)

]
Step 2 Corrector step:

∆pk+1
m =

1
∆t

∇ · uk+1
m

uk+1
m = uk+1

m −∆t∇pk+1
m
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pySDC prototyping

pySDC

• Prototyping
• Education
• Easy access
• Python

•Well-documented
• Tutorials and examples

• Open source
• Designed for HPC
• Parallel and serial

•Many variants of SDC
and PFASST

• Can use many
data structure
and solvers

(FEniCS,PETSc)

https://parallel-in-time.org/pySDC
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IMEX SDC (SISDC) for advection-diffusion equations
Advection-diffusion of a Gaussian hill problem

1 Mathematical model


∂c
∂t + v · ∇c− ν∆c = f in Ω× [0, T]

c = g on ∂Ω× [0, T]
c(x, y,0) = c0(x, y) in Ω

2 Problem setup

c(x, y, t) =
5

7
√
1+ 4νt

l2

exp

−

x− x0 − t

l
√
1+ 4νt

l2

2


with l = 7
√
2

300 , x0 = 2
15 and Ω = [0, 1]× [0, 1]
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IMEX SDC (SISDC) using projection-based splitting scheme
Lift coefficient using different SDC

Figure: Lift coefficient using different SDC setups and time steps
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Parallel SDC: Diagonal Preconditioners
G. Čaklović et al., Improving Efficiency of Parallel Across the Method Spectral Deferred Corrections. Preprint in arXiv

Diagonal SDC: Q∆,I = Qdiag
∆ = diag (d1, · · · , dM) and Q∆,E = 0

[M]uk+1
m = [M]u0 +∆t

M∑
j=1

qm,jf(τm, ukj ) + ∆tdm
[
fI(τm, uk+1

m )− fI(τm, ukm)
]

1 Diagonal implicit Euler (IEpar)
QIEpar
∆ = diag(τi − t0),

with τi the nodes of the quadrature rule.
2 MIN-SR-NS diagonal coefficients
For any collocation method on M distinct nodes, then ρ(Q− Q∆) = 0 for

Q∆ = diag
( τ1
M
, · · · , τM

M

)
3 MIN-SR-S diagonal coefficients
We minimize ρ(I− Q−1

∆ Q) by choosing diagonal coefficients such that

det
(
(1− z)I+ zQ−1

∆ Q
)
= 1, z ∈ {τ1, · · · , τM}
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IMEX SDC (SISDC) using projection-based splitting scheme
Comparison of different preconditioners

Figure: Lift coefficient using different SDC setups and
time steps

Figure: Average number of iterations needed by various
preconditioners after 50 timesteps at four different time
points throughout the simulation
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Fully implicit SDC using the monolithic approach
• Navier-Stokes equations

∂u
∂t

= −u · ∇u +∇p+ ν∆u + g

0 = ∇ · u

• Semi-discrete form of the Navier-Stokes equations.

[M]
du
dt

= −[Cu]u − [k]u + [B]p+ [M]g,

0 = [BT]u

• Differential algebraic equations (DAEs)

[M]
du
dt

= F (u, p, t) ,

0 = G (u, t) .
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Fully implicit SDC using the monolithic approach: DAEs sweeper
• with du

dt
= U the SDC iteration for uk+1

m can be written as

uk+1
m = u0 +∆t

M∑
j=1

qm,jUk
j +∆t

m∑
j=1

q∆m,j

[
Uk+1
j − Uk

j

]
Thus

[M]

=
du
dt︷︸︸︷

Uk+1
m = F


= uk+1

m︷ ︸︸ ︷
u0 +∆t

M∑
j=1

qm,jUk
j +∆t

m∑
j=1

q∆m,j

[
Uk+1
j − Uk

j

]
, pk+1

m , τm

 ,

0 = G

u0 +∆t
M∑
j=1

qm,jUk
j +∆t

m∑
j=1

q∆m,j

[
Uk+1
j − Uk

j

]
, τm

 .
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Fully implicit SDC using the monolithic approach: DAEs sweeper
Using the matrix notation we obtain [M] + ∆tq∆m,m ([Cu] + [k]) [B]

−∆tq∆m,m[B
T] 0

 Uk+1
m

pk+1
m

 =

 − (Cu] + [k]) ũm + [M]gm

[BT]ũm

 , (1)

with

ũm = u0 +∆t
M∑
j=1

qm,jUk
j −∆t

m∑
j=1

q∆m,jU
k
j +∆t

m−1∑
j=1

q∆m,jU
k+1
j

When this problem converges to a solution (Us
m, psm) form = 1, · · · ,M, the final solutions can be computed

as follows

un+1 = un +∆t
M∑
j=1

qm,jUs
j and pn+1 = psM (2)
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Fully implicit SDC using the monolithic approach: DAEs sweeper
Comparison of different preconditioners

Figure: Lift coefficient using different SDC setups and time steps
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Fully implicit SDC using the monolithic approach: DAEs sweeper
Comparison of different preconditioners

Figure: Lift coefficient using different SDC setups and time steps
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Fully implicit SDC using the monolithic approach: DAEs sweeper
Comparison of different preconditioners

Figure: Number of iterations needed by various preconditioners throughout the simulation
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Fully implicit SDC using the monolithic approach: PDEs sweeper
• Semi-discrete form of the Navier-Stokes equations.

[M]
du
dt

= −[Cu]u − [k]u + [B]p+ [M]g,

0 = [BT]u

•Matrix-vector form of the semi-discrete form [M] 0

0 0

 du
dt

dp
dt

 =

 −[Cu]− [k] [B]

[BT] 0

 u

p

+

 [M]g

0

 .

• Ordinary differential equation (ODE)

[α]
dw
dt

= [β]w + γ = f (w, t) ,
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Fully implicit SDC using the monolithic approach: PDEs sweeper
Comparison of different preconditioners

Figure: Lift coefficient using different SDC setups and time steps
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Fully implicit SDC using the monolithic approach: PDEs sweeper
Comparison of different preconditioners

Figure: Lift coefficient using different SDC setups and time steps
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Fully implicit SDC using the monolithic approach: PDEs sweeper
Comparison of different preconditioners

Figure: Number of iterations needed by various preconditioners throughout the simulation
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Fully implicit SDC using the monolithic approach: PDEs sweeper
Comparison of different preconditioners

Figure: Number of iterations needed by various preconditioners throughout the simulation
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Fully implicit SDC using the monolithic approach: PDEs sweeper
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Summary
SDC method can use simple numerical method (even a first-order method) to compute a solution with
higher-order accuracy.
SDC can be used for various initial value problems, using explicit, implicit or implicit- explicit schemes.
parallelization can be done across the method (i.e. using diagonal preconditioners).

what’s next?
Assess code performance with advanced numerical test cases to ensure robustness.
Optimize parallel execution and analyze the space-time speedup.
Implement SDC in the FEAT3 toolbox.
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Fully implicit SDC using the monolithic approach
Lift coefficient using different SDC

Figure: Lift coefficient using various SDC methods with∆t = 1
25 , compared to FEATFLOW reference data with

∆t = 1
1600
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